论文标题
基于原型的域通用框架,用于独立于主题的脑部计算机界面
Prototype-based Domain Generalization Framework for Subject-Independent Brain-Computer Interfaces
论文作者
论文摘要
由于脑电脑术(EEG)的间/受试者间变异性,在实践中使用脑部计算机界面(BCI)。通常,BCI系统需要采用校准技术来获取主题/会话特定数据,以便每次使用系统时调整模型。这个问题被认为是对BCI的关键障碍,并且基于领域概括的新策略最近已进化以解决它。鉴于此,我们专注于开发一个可以直接应用于未知域(即受试者)数据的EEG分类框架,该框架仅使用先前从单独的主题中获取的数据。为此,在本文中,我们提出了一个框架,该框架采用开放式识别技术作为辅助任务,从源数据集中学习特定于主题的样式功能,同时帮助共享特征提取器绘制未看到的目标数据集的功能作为新的看不见的域。我们的目的是在同一领域中强加跨境风格的内变化,并降低潜在看不见的主题的开放空间风险,以提高共享特征提取器的概括能力。我们的实验表明,将域信息用作辅助网络会增加概括性能。
Brain-computer interface (BCI) is challenging to use in practice due to the inter/intra-subject variability of electroencephalography (EEG). The BCI system, in general, necessitates a calibration technique to obtain subject/session-specific data in order to tune the model each time the system is utilized. This issue is acknowledged as a key hindrance to BCI, and a new strategy based on domain generalization has recently evolved to address it. In light of this, we've concentrated on developing an EEG classification framework that can be applied directly to data from unknown domains (i.e. subjects), using only data acquired from separate subjects previously. For this purpose, in this paper, we proposed a framework that employs the open-set recognition technique as an auxiliary task to learn subject-specific style features from the source dataset while helping the shared feature extractor with mapping the features of the unseen target dataset as a new unseen domain. Our aim is to impose cross-instance style in-variance in the same domain and reduce the open space risk on the potential unseen subject in order to improve the generalization ability of the shared feature extractor. Our experiments showed that using the domain information as an auxiliary network increases the generalization performance.