论文标题

量子2-wasserstein距离的单调性

Monotonicity of the quantum 2-Wasserstein distance

论文作者

Bistroń, Rafał, Eckstein, Michał, Życzkowski, Karol

论文摘要

我们研究了2-wasserstein距离的量子类似物,以衡量尺寸$ n $密度矩阵的集合$ω_n$。我们表明,这种(半)距离不会在$ω_n$的切线束上诱导Riemannian指标,并且通常不是统一的不变性。然而,我们证明,对于$ n = 2 $尺寸希尔伯特空间,量子2-wasserstein距离(唯一重新缩放)对于任何单量量子操作都是单调的,而量子传输问题的解决方案本质上是独一无二的。此外,对于任何$ n \ geq 3 $和与投影仪成正比的量子成本矩阵,我们证明了在任意混合统一渠道下的单调性。最后,我们提供了数值证据,使我们能够猜想统一不变的Quantum 2-Wasserstein semi-distance相对于任何维度$ n $中的所有CPTP地图都是单调的。

We study a quantum analogue of the 2-Wasserstein distance as a measure of proximity on the set $Ω_N$ of density matrices of dimension $N$. We show that such (semi-)distances do not induce Riemannian metrics on the tangent bundle of $Ω_N$ and are typically not unitary invariant. Nevertheless, we prove that for $N=2$ dimensional Hilbert space the quantum 2-Wasserstein distance (unique up to rescaling) is monotonous with respect to any single-qubit quantum operation and the solution of the quantum transport problem is essentially unique. Furthermore, for any $N \geq 3$ and the quantum cost matrix proportional to a projector we demonstrate the monotonicity under arbitrary mixed unitary channels. Finally, we provide numerical evidence which allows us to conjecture that the unitary invariant quantum 2-Wasserstein semi-distance is monotonous with respect to all CPTP maps in any dimension $N$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源