论文标题
普遍的不确定性原理和渐近安全重力
Generalized uncertainty principle and Asymptotic Safe gravity
论文作者
论文摘要
我们提出了一个程序,将广义不确定性原理的变形参数$β链接到两个自由参数$ \ om $和渐近安全重力(ASG)程序的牛顿耦合常数的两个免费参数。为此,我们以两种不同的方式计算黑洞的鹰温度。第一种方法涉及使用GUP代替Heisenberg的不确定性关系,因此我们获得了包含参数$β$的变形鹰温度。第二种方法涉及由于根据AS重力处方进行的牛顿耦合不断运行而导致的Schwarzschild指标的变形。两种技术的比较产生了$β$和$ \ om $,$γ$之间的关系。作为一种特殊情况,我们还讨论了所谓的$ξ$ -MODEL。 $β$和$ \ om $,$ξ$之间的关系使我们可以将上限从一个参数传递到另一个参数。
We present a procedure to link the deformation parameter $β$ of the generalized uncertainty principle (GUP) to the two free parameters $\om$ and $γ$ of the running Newtonian coupling constant of the Asymptotic Safe gravity (ASG) program. To this aim, we compute the Hawking temperature of a black hole in two different ways. The first way involves the use of the GUP in place of the Heisenberg uncertainty relations, and therefore we get a deformed Hawking temperature containing the parameter $β$. The second way involves the deformation of the Schwarzschild metric due to the Newtonian coupling constant running according to the AS gravity prescription. The comparison of the two techniques yields a relation between $β$ and $\om$, $γ$. As a particular case, we discuss also the so called $ξ$-model. The relations between $β$ and $\om$, $ξ$ allow us to transfer upper bounds from one parameter to the others.