论文标题
les nombres de cuesta-conway comme扩展des ordinaux de cantor:UNE Courte介绍Aux NombresSurréels
Les nombres de Cuesta-Conway comme extension des ordinaux de Cantor: une courte introduction aux nombres surréels
论文作者
论文摘要
关于Cuesta-conway的数字,作为Cantor序列的扩展:超现实数字的简短介绍。可以简单地定义Cuesta-conway数字的类别(超现实数字),从它们的正常形式(指数为序数指数的家族),这是对真实和序数的扩展,从中又遵循添加,乘法和总订单关系。可以说,该类别的构造产生了越来越多的实际界面的序列,即初步的序列。还可以完全证明超现实数字类别是一个完全有序,交换性,实际关闭的领域!
On Cuesta-Conway numbers as an extension of Cantor's ordinals: A short introduction to surreal numbers. The class of Cuesta-Conway numbers, the surreal numbers, can be defined simply, starting from their normal forms (families of exponentials indexed by ordinals), as an extension of the reals and ordinals from which easily follow addition, multiplication, and total order relation. A construction of this class yields an increasing sequence of real-closed fields, preliminary, so to say. A complete proof is also given the well-known result that the class of surreal numbers is a totally ordered, commutative, real-closed field!