论文标题

部分可观测时空混沌系统的无模型预测

Easy-Sec: PUF-Based Rapid and Robust Authentication Framework for the Internet of Vehicles

论文作者

Sadhu, Pintu Kumar, Yanambaka, Venkata P., Mohanty, Saraju P., Kougianos, Elias

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

With the rapid growth of new technological paradigms such as the Internet of Things (IoT), it opens new doors for many applications in the modern era for the betterment of human life. One of the recent applications of the IoT is the Internet of Vehicles (IoV) which helps to see unprecedented growth of connected vehicles on the roads. The IoV is gaining attention due to enhancing traffic safety and providing low route information. One of the most important and major requirements of the IoV is preserving security and privacy under strict latency. Moreover, vehicles are required to be authenticated frequently and fast considering limited bandwidth, high mobility, and density of the vehicles. To address the security vulnerabilities and data integrity, an ultralight authentication scheme has been proposed in this article. Physical Unclonable Function (PUF) and XOR function are used to authenticate both server and vehicle in two message flow which makes the proposed scheme ultralight, and less computation is required. The proposed Easy-Sec can authenticate vehicles maintaining low latency and resisting known security threats. Furthermore, the proposed Easy-Sec needs low overhead so that it does not increase the burden of the IoV network. Computational ( around 4 ms) and Communication (32 bytes) overhead shows the feasibility, efficiency, and also security features are depicted using formal analysis, Burrows, Abadi, and Needham (BAN) logic, and informal analysis to show the robustness of the proposed mechanisms against security threats.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源