论文标题
加权移动中的li-yyorke和Devaney混沌统一动力学系统
Li-Yorke and Devaney chaotic uniform dynamical systems amongst weighted shifts
论文作者
论文摘要
在本文中,对于有限的离散字段$ f $,非空置集$γ$,权重vector $ \ mathfrak {w} =({{\ mathfrak w}_α)_ {α\inγ} \在f^γ$中均匀动力学系统的足够条件$(f^γ,σ_{φ,{\ Mathfrak w}})$ to li-yorke chaotic。接下来,我们发现$(f^γ,σ_{φ,{\ mathfrak w}})$的必要条件是Devaney Chaotic。
In this paper, for finite discrete field $F$, nonempty set $Γ$, weight vector $\mathfrak{w}=({\mathfrak w}_α)_{α\inΓ}\in F^Γ$ and weighted generalized shift $σ_{φ,{\mathfrak w}}:F^Γ\to F^Γ$, we find necessary and sufficient conditions for uniform dynamical system $(F^Γ,σ_{φ,{\mathfrak w}})$ to be Li--Yorke chaotic. Next we find necessary and sufficient conditions for $(F^Γ,σ_{φ,{\mathfrak w}})$ to be Devaney chaotic.