论文标题
部分可观测时空混沌系统的无模型预测
Higher order log-concavity of the overpartition function and its consequences
论文作者
论文摘要
令$ \ bar {p}(n)$表示分区函数。在本文中,我们研究了在Hou和Zhang为分区功能的类似框架中,在类似的框架中研究了渐近的$ \ log $ conccavity属性。这将使我们能够进一步继续前进,以证明$ \ log $ -concavity of PertaTitions,明确研究商的渐近扩展$ \ bar {p}(n-1)\ bar {p} \ bar {p}(n+1)/\ bar {p}(p}(n)^2 $,以便最终以某种秩序结束,以便最终结束。 $ 2 $ - $ \ log $ -concavity和高级订单Turán属性$ \ bar {p}(n)$,遵循一种统一的方法。
Let $\bar{p}(n)$ denote the overpartition function. In this paper, we study the asymptotic higher order $\log$-concavity property of the overpatition function in a similar framework done by Hou and Zhang for the partition function. This will enable us to move on further in order to prove $\log$-concavity of overpartitions, explicitly by studying the asymptotic expansion of the quotient $\bar{p}(n-1)\bar{p}(n+1)/\bar{p}(n)^2$ upto a certain order so that one can finally ends up with the phenomena of $2$-$\log$-concavity and higher order Turán property of $\bar{p}(n)$ by following a sort of unified approach.