论文标题

LRH-NET:低资源心脏网络的多层知识蒸馏方法

LRH-Net: A Multi-Level Knowledge Distillation Approach for Low-Resource Heart Network

论文作者

Chauhan, Ekansh, Guptha, Swathi, Reddy, Likith, Raju, Bapi

论文摘要

心电图(ECG)监测心脏产生的电活动,用于检测致命的心血管疾病(CVD)。从传统上讲,为了捕获精确的电活动,临床专家使用多铅的心电图(通常为12条线索)。但是最近,大尺寸的深度学习模型已被用来检测这些疾病。但是,这样的模型需要大量的计算资源,例如巨大的内存和较长的推理时间。为了减轻这些缺点,我们提出了一个低参数模型,称为低资源心脏网络(LRH-NET),该模型使用较少的潜在客户在资源约束环境中检测ECG异常。除此之外,还使用多层次知识蒸馏过程,以在我们提出的模型上获得更好的概括性能。多层次知识蒸馏过程将知识提取到接受训练的LRH-NET,以减少在多个潜在客户上训练的较高参数(教师)模型减少的铅数,以减少性能差距。在Physionet-2020挑战数据集上评估了所提出的模型,并且输入受限。 LRH-NET的参数比检测CVD的教师模型小106倍。与教师模型相比,LRH-NET的性能缩放高达3.2%,推理时间缩小了75%。与计算和参数密集的深度学习技术相反,提出的方法使用了使用低资源LRH-NET的ECG铅的子集,使其非常适合在边缘设备上部署。

An electrocardiogram (ECG) monitors the electrical activity generated by the heart and is used to detect fatal cardiovascular diseases (CVDs). Conventionally, to capture the precise electrical activity, clinical experts use multiple-lead ECGs (typically 12 leads). But in recent times, large-size deep learning models have been used to detect these diseases. However, such models require heavy compute resources like huge memory and long inference time. To alleviate these shortcomings, we propose a low-parameter model, named Low Resource Heart-Network (LRH-Net), which uses fewer leads to detect ECG anomalies in a resource-constrained environment. A multi-level knowledge distillation process is used on top of that to get better generalization performance on our proposed model. The multi-level knowledge distillation process distills the knowledge to LRH-Net trained on a reduced number of leads from higher parameter (teacher) models trained on multiple leads to reduce the performance gap. The proposed model is evaluated on the PhysioNet-2020 challenge dataset with constrained input. The parameters of the LRH-Net are 106x less than our teacher model for detecting CVDs. The performance of the LRH-Net was scaled up to 3.2% and the inference time scaled down by 75% compared to the teacher model. In contrast to the compute- and parameter-intensive deep learning techniques, the proposed methodology uses a subset of ECG leads using the low resource LRH-Net, making it eminently suitable for deployment on edge devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源