论文标题

semeval-2022任务2:Neamer-命名实体增强多字表达式识别器

kpfriends at SemEval-2022 Task 2: NEAMER -- Named Entity Augmented Multi-word Expression Recognizer

论文作者

Oh, Min Sik

论文摘要

我们提出Neamer-命名实体增强多字表达式识别器。该系统的灵感来自命名实体和惯用表达式之间共享的非复合性特征。我们利用转移学习和局部功能来增强成语分类任务。该系统是我们的Semeval任务2:多语言惯用性检测和句子嵌入子任务的句子共享任务。在评估后阶段,我们以F1 0.9395实现SOTA。我们还观察到训练稳定性的改善。最后,我们尝试了非构成知识转移,跨语性的微调和局部特征,我们也会在本文中介绍。

We present NEAMER -- Named Entity Augmented Multi-word Expression Recognizer. This system is inspired by non-compositionality characteristics shared between Named Entity and Idiomatic Expressions. We utilize transfer learning and locality features to enhance idiom classification task. This system is our submission for SemEval Task 2: Multilingual Idiomaticity Detection and Sentence Embedding Subtask A OneShot shared task. We achieve SOTA with F1 0.9395 during post-evaluation phase. We also observe improvement in training stability. Lastly, we experiment with non-compositionality knowledge transfer, cross-lingual fine-tuning and locality features, which we also introduce in this paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源