论文标题
旋转常规黑洞和其他具有Tolman类型的紧凑型物体,作为Kerr公制的常规内饰
Rotating regular black holes and other compact objects with a Tolman type potential as a regular interior for the Kerr metric
论文作者
论文摘要
我们通过使用具有适当质量函数的Gürses-gürsey指标获得了一类新的固定轴对称空间,以生成物质的旋转核心,这些旋转核心可能会平稳地匹配与外部Kerr指标。可以通过将Newman-Janis算法的略微修改版本应用于非旋转球形对称种子度量标准来获得相同的固定空间。启动球体对称配置代表了一种非偶然的DE-DETTER类型流体,其径向压力$ p_r $满足形式$ p_r =-ρ$的状态方程,其中能量密度$ρ$被选为TOLMAN TYPE-VII能量密度[R. R. R. C. Tolman,物理。修订版{\ bf 55},364(1939)]。然后将所得的旋转度量平滑匹配到外部Kerr度量标准,并研究了所获得的几何形状的主要特性。本研究中考虑的所有解决方案都是规律的,因为它们没有曲率奇异性。根据总质量$ m $和旋转参数$ a $的相对值,由此产生的固定空间代表了不同种类的旋转紧凑型物体,例如常规黑洞,极端的常规黑洞和常规的恒星型配置。
We obtain a new class of stationary axisymmetric spacetimes by using the Gürses-Gürsey metric with an appropriate mass function in order to generate a rotating core of matter that may be smoothly matched to the exterior Kerr metric. The same stationary spacetimes may be obtained by applying a slightly modified version of the Newman-Janis algorithm to a nonrotating spherically symmetric seed metric. The starting spherically symmetric configuration represents a nonisotropic de-Sitter type fluid whose radial pressure $p_r$ satisfies an state equation of the form $p_r=-ρ$, where the energy density $ρ$ is chosen to be the Tolman type-VII energy density [R. C. Tolman, Phys. Rev. {\bf 55}, 364 (1939)]. The resulting rotating metric is then smoothly matched to the exterior Kerr metric, and the main properties of the obtained geometries are investigated. All the solutions considered in the present study are regular in the sense they are free of curvature singularities. Depending on the relative values of the total mass $m$ and rotation parameter $a$, the resulting stationary spacetimes represent different kinds of rotating compact objects such as regular black holes, extremal regular black holes, and regular starlike configurations.