论文标题
并行网络,具有频道注意和颈动脉的后处理,超声图像中的易受损斑块分割
Parallel Network with Channel Attention and Post-Processing for Carotid Arteries Vulnerable Plaque Segmentation in Ultrasound Images
论文作者
论文摘要
颈动脉脆弱的斑块是通过超声技术筛查动脉粥样硬化的关键因素。但是,这些斑块被各种噪音(例如人工制品,斑点噪声和手动分割)污染。本文提出了一种使用小数据集在颈动脉超声图像中的自动卷积神经网络(CNN)方法。首先,将具有三个独立比例解码器的并行网络用作我们的基础分割网络,金字塔扩张卷积用于扩大三个分割子网络中的接收场。随后,这三个解码器被合并以通过SENET在渠道中纠正。第三,在测试阶段,最初分割的斑块通过后处理后的最大轮廓形态进行了完善,以获得最终的斑块。此外,将三个损失骰子丢失,SSIM丢失和跨透明镜丢失与部分斑块进行比较。测试结果表明,具有骰子损失函数的拟议方法的骰子值为0.820,IOU为0.701,ACC为0.969,而修改后的Hausdorff距离(MHD)为1.43,对于30个易受攻击的斑块案例,它胜过一些常规的CNN基于这些学术的CNN方法。此外,我们采用消融实验来显示每个提出的模块的有效性。我们的研究为类似研究提供了一些参考,并且可能在实际应用中用于超声颈动脉的牙菌斑分割。
Carotid arteries vulnerable plaques are a crucial factor in the screening of atherosclerosis by ultrasound technique. However, the plaques are contaminated by various noises such as artifact, speckle noise, and manual segmentation may be time-consuming. This paper proposes an automatic convolutional neural network (CNN) method for plaque segmentation in carotid ultrasound images using a small dataset. First, a parallel network with three independent scale decoders is utilized as our base segmentation network, pyramid dilation convolutions are used to enlarge receptive fields in the three segmentation sub-networks. Subsequently, the three decoders are merged to be rectified in channels by SENet. Thirdly, in test stage, the initially segmented plaque is refined by the max contour morphology post-processing to obtain the final plaque. Moreover, three loss function Dice loss, SSIM loss and cross-entropy loss are compared to segment plaques. Test results show that the proposed method with dice loss function yields a Dice value of 0.820, an IoU of 0.701, Acc of 0.969, and modified Hausdorff distance (MHD) of 1.43 for 30 vulnerable cases of plaques, it outperforms some of the conventional CNN-based methods on these metrics. Additionally, we apply an ablation experiment to show the validity of each proposed module. Our study provides some reference for similar researches and may be useful in actual applications for plaque segmentation of ultrasound carotid arteries.