论文标题
Lee-Yang的二维量子ISING模型理论
Lee-Yang theory of the two-dimensional quantum Ising model
论文作者
论文摘要
确定相互作用量子多体系统的相图是一项重要的任务,例如对量子材料的理解和设计等广泛的问题。对于经典的平衡系统,Lee-Yang的形式主义为相变提供了严格的基础,并且这些想法也扩展到了量子领域。在这里,我们开发了李杨的量子相变理论,该理论可能包括由有限温度引起的热波动,从而提供了经典的Lee-Yang形式主义与零温度下相变的最新理论之间的联系。我们的方法学利用有限大小系统中订单参数的瞬间生成函数的分析属性,并且可以与张量 - 网络计算结合实现。具体而言,对称性相位相位的发作是由矩生成函数的零发出的,该函数接近计数字段的复杂平面,并将其与顺序参数相结合。此外,可以通过测量或计算顺序参数的高累积物来获得零。我们确定了二维量子ISING模型的相图,从而证明了我们方法在有限温度下预测二维量子系统的临界行为的潜力。
Determining the phase diagram of interacting quantum many-body systems is an important task for a wide range of problems such as the understanding and design of quantum materials. For classical equilibrium systems, the Lee-Yang formalism provides a rigorous foundation of phase transitions, and these ideas have also been extended to the quantum realm. Here, we develop a Lee-Yang theory of quantum phase transitions that can include thermal fluctuations caused by a finite temperature, and it thereby provides a link between the classical Lee-Yang formalism and recent theories of phase transitions at zero temperature. Our methodology exploits analytic properties of the moment generating function of the order parameter in systems of finite size, and it can be implemented in combination with tensor-network calculations. Specifically, the onset of a symmetry-broken phase is signaled by the zeros of the moment generating function approaching the origin in the complex plane of a counting field that couples to the order parameter. Moreover, the zeros can be obtained by measuring or calculating the high cumulants of the order parameter. We determine the phase diagram of the two-dimensional quantum Ising model and thereby demonstrate the potential of our method to predict the critical behavior of two-dimensional quantum systems at finite temperatures.