论文标题
增强现实的显着性
Saliency in Augmented Reality
论文作者
论文摘要
随着多媒体技术的快速发展,增强现实(AR)已成为一个有希望的下一代移动平台。 AR的基本理论是人类的视觉混乱,它使用户可以通过将它们叠加在一起,同时感知现实世界中的场景和增强内容(虚拟世界场景)。为了获得高质量的经验(QOE),重要的是要了解两种情况之间的相互作用并和谐地显示AR内容。但是,关于这种叠加将如何影响人类视觉关注的研究。因此,在本文中,我们主要分析背景(BG)场景和AR内容之间的相互作用效果,并研究AR中的显着性预测问题。具体而言,我们首先在AR数据集(SARD)中构建一个显着性,其中包含450 bg图像,450张AR图像,以及由叠加BG和AR图像产生的1350个叠加图像,并配对三个混合级别。在60个受试者中进行了大规模的眼神跟踪实验,以收集眼动数据。为了更好地预测AR的显着性,我们提出了一种量化显着性预测方法,并将其推广为AR显着性预测。为了进行比较,提出并评估了三种基准方法,并与我们在沙德上提出的方法一起进行了评估。实验结果证明了我们提出的方法在常见的显着性预测问题和AR显着性预测问题上的优越性比基准方法的优势。我们的数据集和代码可在以下网址获得:https://github.com/duanhuiyu/arsaligy。
With the rapid development of multimedia technology, Augmented Reality (AR) has become a promising next-generation mobile platform. The primary theory underlying AR is human visual confusion, which allows users to perceive the real-world scenes and augmented contents (virtual-world scenes) simultaneously by superimposing them together. To achieve good Quality of Experience (QoE), it is important to understand the interaction between two scenarios, and harmoniously display AR contents. However, studies on how this superimposition will influence the human visual attention are lacking. Therefore, in this paper, we mainly analyze the interaction effect between background (BG) scenes and AR contents, and study the saliency prediction problem in AR. Specifically, we first construct a Saliency in AR Dataset (SARD), which contains 450 BG images, 450 AR images, as well as 1350 superimposed images generated by superimposing BG and AR images in pair with three mixing levels. A large-scale eye-tracking experiment among 60 subjects is conducted to collect eye movement data. To better predict the saliency in AR, we propose a vector quantized saliency prediction method and generalize it for AR saliency prediction. For comparison, three benchmark methods are proposed and evaluated together with our proposed method on our SARD. Experimental results demonstrate the superiority of our proposed method on both of the common saliency prediction problem and the AR saliency prediction problem over benchmark methods. Our dataset and code are available at: https://github.com/DuanHuiyu/ARSaliency.