论文标题

根据价格和销售方式分组产品的时间序列聚类

Time Series Clustering for Grouping Products Based on Price and Sales Patterns

论文作者

Bozanta, Aysun, Berry, Sean, Cevik, Mucahit, Bulut, Beste, Yigit, Deniz, Gonen, Fahrettin F., Başar, Ayşe

论文摘要

开发技术和不断变化的生活方式使在线杂货交付应用程序是城市生活中必不可少的一部分。自COVID-19大流行开始以来,对此类应用的需求已大大增加,从而创造了破坏市场的新竞争者。竞争水平的提高可能会促使公司经常重组其营销和产品定价策略。因此,确定产品价格和销售额的变化方式将为市场上的公司提供竞争优势。在本文中,我们研究了替代聚类方法,以根据价格模式和销售量对产品进行分组。我们提出了一个新颖的距离度量,该指标考虑了产品价格和销售方式如何一起移动,而不是使用数值值计算距离。我们将方法与传统的聚类算法进行比较,这些算法通常依赖于诸如欧几里得距离之类的通用距离指标,以及旨在通过捕获其视觉模式进行分组数据的图像聚类方法。我们使用我们的自定义评估指标以及Calinski Harabasz和Davies Bouldin指数评估了不同聚类算法的性能,这些指标是常用的内部有效性指标。我们使用在线食品和杂货店送货公司以及公开可用的Favorita销售数据集中使用专有价格数据集进行了数值研究。我们发现,我们提出的聚类方法和图像聚类都表现出色,可在大型数据集中找到价格和销售模式相似的产品。

Developing technology and changing lifestyles have made online grocery delivery applications an indispensable part of urban life. Since the beginning of the COVID-19 pandemic, the demand for such applications has dramatically increased, creating new competitors that disrupt the market. An increasing level of competition might prompt companies to frequently restructure their marketing and product pricing strategies. Therefore, identifying the change patterns in product prices and sales volumes would provide a competitive advantage for the companies in the marketplace. In this paper, we investigate alternative clustering methodologies to group the products based on the price patterns and sales volumes. We propose a novel distance metric that takes into account how product prices and sales move together rather than calculating the distance using numerical values. We compare our approach with traditional clustering algorithms, which typically rely on generic distance metrics such as Euclidean distance, and image clustering approaches that aim to group data by capturing its visual patterns. We evaluate the performances of different clustering algorithms using our custom evaluation metric as well as Calinski Harabasz and Davies Bouldin indices, which are commonly used internal validity metrics. We conduct our numerical study using a propriety price dataset from an online food and grocery delivery company, and the publicly available Favorita sales dataset. We find that our proposed clustering approach and image clustering both perform well for finding the products with similar price and sales patterns within large datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源