论文标题

一种概括度量功能的新方法

A new approach to generalize metric functions

论文作者

Das, Abhishikta, Kundu, Anirban, Bag, T.

论文摘要

S-Metric和B-inetric空间是可迁移的,但是仍然不可能获得相关度量功能的明确形式。为了克服这一点,通过对三角形不等式进行合适的修改及其属性非常类似于公制功能,$ ϕ $ metric的概念是开发出来的。结果表明,人们可以轻松地从现有的广义距离函数(例如S-金属,B-Metric等)中构造一个$ ϕ $ metric。这些功能是$ ϕ $ - 超元素。这些度量空间上序列的收敛与相应的$ ϕ $ metric空间相同。因此,与指标不同,相关的$ ϕ $ metric可以很容易地构造,并且$ ϕ $ - metric函数可能会基本上起着公制功能的作用。同样,还研究了$ ϕ $ - metric空间的结构,并建立了一些固定点定理。

S-metric and b-metric spaces are metrizable, but it is still quite impossible to get an explicit form of the concerned metric function. To overcome this, the notion of $ϕ$-metric is developed by making a suitable modification in triangle inequality and its properties are pretty similar to metric function. It is shown that one can easily construct a $ϕ$-metric from existing generalized distance functions like S-metric, b-metric, etc. and those are $ϕ$-metrizable. The convergence of sequence on those metric spaces is identical to the respective induced $ϕ$-metric spaces. So, unlike metrics, concerned $ϕ$-metric can be easily constructed and $ϕ$-metric functions may play the role of metric functions substantially. Also, the structure of $ϕ$-metric spaces is studied and some fixed point theorems are established.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源