论文标题
部分可观测时空混沌系统的无模型预测
CoDe: A Cooperative and Decentralized Collision Avoidance Algorithm for Small-Scale UAV Swarms Considering Energy Efficiency
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This paper introduces a cooperative and decentralized collision avoidance algorithm (CoDe) for small-scale UAV swarms consisting of up to three UAVs. CoDe improves energy efficiency of UAVs by achieving effective cooperation among UAVs. Moreover, CoDe is specifically tailored for UAV's operations by addressing the challenges faced by existing schemes, such as ineffectiveness in selecting actions from continuous action spaces and high computational complexity. CoDe is based on Multi-Agent Reinforcement Learning (MARL), and finds cooperative policies by incorporating a novel credit assignment scheme. The novel credit assignment scheme estimates the contribution of an individual by subtracting a baseline from the joint action value for the swarm. The credit assignment scheme in CoDe outperforms other benchmarks as the baseline takes into account not only the importance of a UAV's action but also the interrelation between UAVs. Furthermore, extensive experiments are conducted against existing MARL-based and conventional heuristic-based algorithms to demonstrate the advantages of the proposed algorithm.