论文标题

预期$ l_2- $差异限制为一类新的分层采样模型

Expected $L_2-$discrepancy bound for a class of new stratified sampling models

论文作者

Xian, Jun, Xu, Xiaoda

论文摘要

我们介绍了一类凸的e象分区。在这些分区中讨论了预期的$ l_2- $差异。有两个主要结果。首先,在这种分区下,我们生成的随机点集具有比相同采样数字的经典抖动抽样相比,预​​期$ l_2- $差异较小。其次,还给出了在这种分区下的明确预期$ L_2- $差异上限。此外,在这些新分区中,有最佳的预期$ L_2- $差异上限。

We introduce a class of convex equivolume partitions. Expected $L_2-$discrepancy are discussed under these partitions. There are two main results. First, under this kind of partitions, we generate random point sets with smaller expected $L_2-$discrepancy than classical jittered sampling for the same sampling number. Second, an explicit expected $L_2-$discrepancy upper bound under this kind of partitions is also given. Further, among these new partitions, there is optimal expected $L_2-$discrepancy upper bound.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源