论文标题
非交换张量三角类别和相干框架
Noncommutative tensor triangulated categories and coherent frames
论文作者
论文摘要
我们开发了一种无点的方法,用于在某些轻度假设下构建非交通量张量三角类别的中Nakano-vashaw-Yakimov-Balmer谱。特别是,我们提供了一种概念性的方法,可以使用框架理论方法对非交通量张量三角类别的根部厚度张量理想进行分类,从而在过程中恢复了通用支持数据。我们进一步表明,在Hochster双重拓扑中,非共同张量三角类别的激进厚度张量理想的光谱空间与其光谱的开放子集的集合之间存在同态性。
We develop a point-free approach for constructing the Nakano-Vashaw-Yakimov-Balmer spectrum of a noncommutative tensor triangulated category under some mild assumptions. In particular, we provide a conceptual way of classifying radical thick tensor ideals of a noncommutative tensor triangulated category using frame theoretic methods, recovering the universal support data in the process. We further show that there is a homeomorphism between the spectral space of radical thick tensor ideals of a noncommutative tensor triangulated category and the collection of open subsets of its spectrum in the Hochster dual topology.