论文标题

对智能手机生命体征的有效基于深度学习的估计

Efficient Deep Learning-based Estimation of the Vital Signs on Smartphones

论文作者

Samavati, Taha, Farvardin, Mahdi, Ghaffari, Aboozar

论文摘要

随着智能手机在我们的日常生活中的越来越多的使用,这些设备已经能够执行许多复杂的任务。关于需要持续监测生命体征,尤其是对于老年人或患有某些类型疾病的人的需求,可以使用智能手机估算生命体征的算法的发展吸引了全球研究人员。特别是,研究人员一直在探索使用可以在智能手机上运行的算法来估计生命体征的方法,例如心率,氧饱和度和呼吸速率。但是,这些算法中的许多都需要多个预处理步骤,这些步骤可能会引入某些实现开销,或者需要设计几个手工制作的阶段才能获得最佳结果。为了解决这个问题,这项研究提出了一种新颖的端到端解决方案,用于使用深度学习的基于移动的生命体征估算,以消除对预处理的需求。通过使用完全卷积的体系结构,与使用完全连接的层作为预测头的体系结构相比,所提出的模型的参数较少,计算复杂性较小。这也降低了过度拟合的风险。此外,还提供了一个用于生命体征估算的公共数据集,其中包括从35名男性和27名女性中收集的62个视频。总体而言,拟议的端对端方法有望在易于使用的消费电子产品上进行效率和性能大大提高效率和性能。

With the increasing use of smartphones in our daily lives, these devices have become capable of performing many complex tasks. Concerning the need for continuous monitoring of vital signs, especially for the elderly or those with certain types of diseases, the development of algorithms that can estimate vital signs using smartphones has attracted researchers worldwide. In particular, researchers have been exploring ways to estimate vital signs, such as heart rate, oxygen saturation levels, and respiratory rate, using algorithms that can be run on smartphones. However, many of these algorithms require multiple pre-processing steps that might introduce some implementation overheads or require the design of a couple of hand-crafted stages to obtain an optimal result. To address this issue, this research proposes a novel end-to-end solution to mobile-based vital sign estimation using deep learning that eliminates the need for pre-processing. By using a fully convolutional architecture, the proposed model has much fewer parameters and less computational complexity compared to the architectures that use fully-connected layers as the prediction heads. This also reduces the risk of overfitting. Additionally, a public dataset for vital sign estimation, which includes 62 videos collected from 35 men and 27 women, is provided. Overall, the proposed end-to-end approach promises significantly improved efficiency and performance for on-device health monitoring on readily available consumer electronics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源