论文标题

部分可观测时空混沌系统的无模型预测

A 3-stage Spectral-spatial Method for Hyperspectral Image Classification

论文作者

Chan, Raymond H., Li, Ruoning

论文摘要

高光谱图像通常具有数百个由飞机或卫星捕获的不同波长的光谱带。由于高光谱图像的光谱和空间分辨率的增强,识别详细的像素类是可行的。在这项工作中,我们提出了一个新颖的框架,该框架利用空间和光谱信息来对高光谱图像中的像素进行分类。该方法包括三个阶段。在第一阶段,预处理阶段,嵌套的滑动窗口算法用于通过{增强相邻像素的一致性}来重建原始数据,然后使用主组件分析来减少数据的尺寸。在第二阶段,培训了支持向量机,以使用图像中的光谱信息估算每个类的像素概率图。最后,通过{确保图像中的空间连接性}进行平滑的总变异模型来平滑类概率向量。我们在六个基准高光谱数据集上证明了我们方法与三种最先进的算法的优势,每个班级具有10至50个培训标签。结果表明,我们的方法可提供准确的总体最佳性能。尤其是,当标记像素的数量减少时,我们的准确性提高会提高,因此我们的方法更有利地适用于小型训练集的问题。因此,这具有很大的实际意义,因为专家注释通常很昂贵且难以收集。

Hyperspectral images often have hundreds of spectral bands of different wavelengths captured by aircraft or satellites that record land coverage. Identifying detailed classes of pixels becomes feasible due to the enhancement in spectral and spatial resolution of hyperspectral images. In this work, we propose a novel framework that utilizes both spatial and spectral information for classifying pixels in hyperspectral images. The method consists of three stages. In the first stage, the pre-processing stage, Nested Sliding Window algorithm is used to reconstruct the original data by {enhancing the consistency of neighboring pixels} and then Principal Component Analysis is used to reduce the dimension of data. In the second stage, Support Vector Machines are trained to estimate the pixel-wise probability map of each class using the spectral information from the images. Finally, a smoothed total variation model is applied to smooth the class probability vectors by {ensuring spatial connectivity} in the images. We demonstrate the superiority of our method against three state-of-the-art algorithms on six benchmark hyperspectral data sets with 10 to 50 training labels for each class. The results show that our method gives the overall best performance in accuracy. Especially, our gain in accuracy increases when the number of labeled pixels decreases and therefore our method is more advantageous to be applied to problems with small training set. Hence it is of great practical significance since expert annotations are often expensive and difficult to collect.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源