论文标题
使用混合LSTM MDN估算全市范围的小时自行车流
Estimating city-wide hourly bicycle flow using a hybrid LSTM MDN
论文作者
论文摘要
骑自行车可以减少温室气体排放和空气污染并增加公共卫生。考虑到这一点,全球城市的政策制定者试图改善自行车模式分享。但是,他们经常与骑自行车的恐惧和感知的风险作斗争。增加自行车模式共享的努力涉及许多措施,其中之一是改善骑行安全性。这需要分析周围事故和结果的因素。但是,对自行车安全性的有意义的分析需要精确的自行车流数据,这些数据通常在细分市场上稀疏甚至不可用。因此,安全工程师通常依靠汇总变量或无法解释由外部因素引起的循环流量变化的校准因素。本文通过提出基于深度学习的方法,即长期的短期记忆混合密度网络(LSTMMDN)来填补这一空白,以估计哥本哈根的每小时自行车流,有条件的,有条件的天气,时间和路段条件。该方法解决了校准因子方法中的缺点,并导致66-77 \%的精确自行车交通估算值。为了量化更准确的自行车交通估算在自行车安全分析中的影响,我们估计自行车碰撞风险模型以评估哥本哈根的自行车撞车事件。除了使用的曝光变量外,模型是相同的。使用LSTMMDN估计值估算了一种模型,一种使用基于校准的估计值,另一个使用年度平均流量估计值进行估算。结果表明,用于获得自行车量估算的更高级方法的投资可以使质量受益,从而通过改进安全分析和其他绩效指标来减轻努力。
Cycling can reduce greenhouse gas emissions and air pollution and increase public health. With this in mind, policy-makers in cities worldwide seek to improve the bicycle mode-share. However, they often struggle against the fear and the perceived riskiness of cycling. Efforts to increase the bicycle's mode-share involve many measures, one of them being the improvement of cycling safety. This requires the analysis of the factors surrounding accidents and the outcome. However, meaningful analysis of cycling safety requires accurate bicycle flow data that is generally sparse or not even available at a segment level. Therefore, safety engineers often rely on aggregated variables or calibration factors that fail to account for variations in the cycling traffic caused by external factors. This paper fills this gap by presenting a Deep Learning based approach, the Long Short-Term Memory Mixture Density Network (LSTMMDN), to estimate hourly bicycle flow in Copenhagen, conditional on weather, temporal and road conditions at the segment level. This method addresses the shortcomings in the calibration factor method and results in 66-77\% more accurate bicycle traffic estimates. To quantify the impact of more accurate bicycle traffic estimates in cycling safety analysis, we estimate bicycle crash risk models to evaluate bicycle crashes in Copenhagen. The models are identical except for the exposure variables being used. One model is estimated using the LSTMMDN estimates, one using the calibration-based estimates, and one using yearly mean traffic estimates. The results show that investing in more advanced methods for obtaining bicycle volume estimates can benefit the quality, mitigating efforts by improving safety analyses and other performance measures.