论文标题
超导光电单光子突触的演示
Demonstration of Superconducting Optoelectronic Single-Photon Synapses
论文作者
论文摘要
超导光电硬件正在探索,这是通往具有前所未有的复杂性和计算能力量表的人工尖峰神经网络的途径。这样的硬件结合了用于几个光速通信的集成 - 光子组件与超导电路,用于快速,节能计算。超导和光子设备的整体整合对于该技术的扩展是必要的。在目前的工作中,超导纳米线单光子检测器首次与约瑟夫森连接单一集成在一起,从而实现了超导光电突触的实现。我们提出了执行模拟加权的电路和单光子前信号的时间泄漏整合。突触加权在电子域中实施,以便可以保持二进制单光子通信。最近的突触活动的记录本地存储在超导循环中。约瑟夫森电路的第二阶段实现了树突状和神经元非线性。该硬件具有出色的设计灵活性,并展示了跨越四个数量级的突触时间常数(数百纳秒至毫秒)。这些突触对超过10 MHz的突触前峰值速率有反应,并且在考虑冷却之前,每次突触事件的动态功率大约消耗33个AJ。除了神经形态硬件外,这些电路还引入了新的途径,以实现大规模的单光子探测器阵列,用于不同的成像,传感和量子通信应用。
Superconducting optoelectronic hardware is being explored as a path towards artificial spiking neural networks with unprecedented scales of complexity and computational ability. Such hardware combines integrated-photonic components for few-photon, light-speed communication with superconducting circuits for fast, energy-efficient computation. Monolithic integration of superconducting and photonic devices is necessary for the scaling of this technology. In the present work, superconducting-nanowire single-photon detectors are monolithically integrated with Josephson junctions for the first time, enabling the realization of superconducting optoelectronic synapses. We present circuits that perform analog weighting and temporal leaky integration of single-photon presynaptic signals. Synaptic weighting is implemented in the electronic domain so that binary, single-photon communication can be maintained. Records of recent synaptic activity are locally stored as current in superconducting loops. Dendritic and neuronal nonlinearities are implemented with a second stage of Josephson circuitry. The hardware presents great design flexibility, with demonstrated synaptic time constants spanning four orders of magnitude (hundreds of nanoseconds to milliseconds). The synapses are responsive to presynaptic spike rates exceeding 10 MHz and consume approximately 33 aJ of dynamic power per synapse event before accounting for cooling. In addition to neuromorphic hardware, these circuits introduce new avenues towards realizing large-scale single-photon-detector arrays for diverse imaging, sensing, and quantum communication applications.