论文标题
随机Belyi表面的脸颊常数
The Cheeger constants of random Belyi surfaces
论文作者
论文摘要
Brooks和Makover通过粘合某些双曲线理想三角形,开发了随机双曲线表面的组合模型。在本文中,我们表明,对于任何$ε> 0 $,随着理想三角形的数量变为Infinity,Brooks-Makover模型中的通用双曲线表面的cheeger常数小于$ \ frac {3} {2π}+ε$。
Brooks and Makover developed a combinatorial model of random hyperbolic surfaces by gluing certain hyperbolic ideal triangles. In this paper we show that for any $ε>0$, as the number of ideal triangles goes to infinity, a generic hyperbolic surface in Brooks-Makover's model has Cheeger constant less than $\frac{3}{2π}+ε$.