论文标题

具有Navier-Slip边界条件的粘性雷利 - 泰勒系统的线性和非线性分析

Linear and nonlinear analysis of the viscous Rayleigh-Taylor system with Navier-slip boundary conditions

论文作者

Nguyen, Tien-Tai

论文摘要

在本文中,我们对非线性雷利 - 泰勒对重力驱动的不稳定不稳定感兴趣,可压缩不可压缩的Navier-Stokes方程,在平稳的增长密度概况$ρ_0(x_2)$中,在slab domain $2πl\2πl\ mathbb {t} t} \ times(-1,1,1,1,1 $ l> 0> 0> 0> 0> 0.0 1d曲线)。对粘性雷利 - 泰勒模型的线性不稳定性研究等于对以下颂歌的研究,对有限间隔$(-1,1)$,\ begin {equation} \ label {eqmain}λ^2(ρ_0k^2 ϕ-(ρ_0K^2 ϕ-) ϕ)= gk^2ρ_0'D,\ end {equation},带有边界条件\ begin {equination} \ label {4thbound} \ begin {cases} ϕ(-1)= 0(1)= 0,\ \ \ \μx) ϕ'(-1),\ end {cases} \ end {equation}其中$λ> 0 $是时间的增长率,$ g> 0 $是重力常数,$ k $是波浪号和两个navier-slip系数$之一$之一对于l^{ - 1} \ Mathbb {z} $中的每个$ k \,我们为线性不稳定性定义了粘度系数$μ_c(k,ξ)$的阈值。因此,在$ k $ -supergalitige的制度中,即$μ>μ_c(k,ξ)$,我们描述了一个光谱分析,以适应由lafitte-nguyen \ cite {ln20}启动的操作员方法\ eqref {eqmain} - \ eqref {4thbound},带有$λ_n\ to 0 $ as $ n \ to \ in h^4(( - 1,1))$。 Based on the existence of infinitely many normal modes of the linearized problem, we construct a wide class of initial data to the nonlinear equations, extending the previous framework of Guo-Strauss \cite{GS95} and of Grenier \cite{Gre00}, to prove the nonlinear Rayleigh-Taylor instability in a high regime of viscosity coefficient, namely $μ> 3 \ sup_ {k \ in l^{ - 1} \ Mathbb {z} \ setMinus \ {0 \}}μ_C(k,k,ξ)$。

In this paper, we are interested in the nonlinear Rayleigh-Taylor instability for the gravity-driven incompressible Navier-Stokes equations with Navier-slip boundary conditions around a smooth increasing density profile $ρ_0(x_2)$ in a slab domain $2πL\mathbb{T} \times (-1,1)$ ($L>0$, $\mathbb{T}$ is the usual 1D torus). The linear instability study of the viscous Rayleigh-Taylor model amounts to the study of the following ODE on the finite interval $(-1,1)$, \begin{equation}\label{EqMain} λ^2 ( ρ_0 k^2 ϕ- (ρ_0 ϕ')')+ λμ(ϕ^{(4)} - 2k^2 ϕ'' + k^4 ϕ) = gk^2 ρ_0'ϕ, \end{equation} with the boundary conditions \begin{equation}\label{4thBound} \begin{cases} ϕ(-1)=ϕ(1)=0,\\ μϕ''(1) = ξ_+ ϕ'(1), \\ μϕ''(-1) =- ξ_- ϕ'(-1), \end{cases} \end{equation} where $λ>0$ is the growth rate in time, $g>0$ is the gravity constant, $k$ is the wave number and two Navier-slip coefficients $ξ_{\pm}$ are nonnegative constants. For each $k\in L^{-1}\mathbb{Z}$, we define a threshold of viscosity coefficient $μ_c(k,Ξ)$ for the linear instability. So that, in the $k$-supercritical regime, i.e. $μ>μ_c(k,Ξ)$, we describe a spectral analysis adapting the operator method initiated by Lafitte-Nguyen \cite{LN20} and prove that there are infinite nontrivial solutions $(λ_n, ϕ_n)_{n\geqslant 1} $ of \eqref{EqMain}-\eqref{4thBound} with $λ_n \to 0$ as $n\to \infty$ and $ϕ_n\in H^4((-1,1))$. Based on the existence of infinitely many normal modes of the linearized problem, we construct a wide class of initial data to the nonlinear equations, extending the previous framework of Guo-Strauss \cite{GS95} and of Grenier \cite{Gre00}, to prove the nonlinear Rayleigh-Taylor instability in a high regime of viscosity coefficient, namely $μ>3\sup_{k\in L^{-1}\mathbb{Z}\setminus\{0\}}μ_c(k,Ξ)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源