论文标题
超音速媒体中通量加权线路畅通和辐射线路的方法和新的列表
Method and new tabulations for flux-weighted line-opacity and radiation line-force in supersonic media
论文作者
论文摘要
在加速和超音速介质中,光子与光谱线的相互作用可能具有最终的重要性。但是,目前只能通过1D稳态流中的专门代码来完成此类线力的充分考虑。更一般的情况和更高的维度需要替代方法。我们提出了一种使用光谱线强度分布参数表计算辐射线路的综合方法,可以用任意(多-D,时间依赖性)模拟应用,其中包括那些考虑线结构不稳定的模拟,以计算适当的不透中。我们假设本地热力学平衡从$ 4 $ $ $ $ $ $的光谱线上计算出通量加权线的不透明度。我们得出了光谱线的强度,并将[10^{ - 20},10^{ - 10}] gcm^{ - 3} $和温度$ t \ in [10^4,10^{4.7}] k $列出了一系列输入密度$ρ\ in [10^{ - 20},10^{ - 10}] gcm^{ - 3} $。我们发现,线分布参数的变化在设置模型中的风力动力学方面起着至关重要的作用。在我们的基准研究中,我们还发现了模型的O-Star质量损失率与使用更详细的辐射转移从稳态研究得出的总体一致。我们的模型强化了线路分布参数的自洽变化对于线驱动流动的动力学很重要。在精心校准的O-Star制度中,我们的结果支持所提出的方法。实际上,使用提供的表,与专用的1-D模型 - 大气 - 大气驱动风码相比,在计算时间内产生了$> 100 $的速度,这构成了有效的多D模拟迈出的重要一步。我们得出的结论是,我们的方法和表准备在线力很重要的各种辐射流动力模拟中被利用。
In accelerating and supersonic media, the interaction of photons with spectral lines can be of ultimate importance. However, fully accounting for such line forces currently can only be done by specialised codes in 1-D steady-state flows. More general cases and higher dimensions require alternative approaches. We presented a comprehensive and fast method for computing the radiation line-force using tables of spectral line-strength distribution parameters, which can be applied in arbitrary (multi-D, time-dependent) simulations, including those accounting for the line-deshadowing instability, to compute the appropriate opacities. We assumed local thermodynamic equilibrium to compute a flux-weighted line opacity from $>4$ million spectral lines. We derived the spectral line strength and tabulated the corresponding line-distribution parameters for a range of input densities $ρ\in[10^{-20},10^{-10}]gcm^{-3}$ and temperatures $T\in[10^4,10^{4.7}]K$. We found that the variation of the line distribution parameters plays an essential role in setting the wind dynamics in our models. In our benchmark study, we also found a good overall agreement between the O-star mass-loss rates of our models and those derived from steady-state studies using more detailed radiative transfer. Our models reinforce that self-consistent variation of the line-distribution parameters is important for the dynamics of line-driven flows. Within a well-calibrated O-star regime, our results support the proposed methodology. In practice, utilising the provided tables, yielded a factor $>100$ speed-up in computational time compared to specialised 1-D model-atmosphere codes of line-driven winds, which constitutes an important step towards efficient multi-D simulations. We conclude that our method and tables are ready to be exploited in various radiation-hydrodynamic simulations where the line force is important.