论文标题
与平衡Orlicz结构的非线性系统的局部不连续的Galerkin近似的收敛分析
Convergence analysis of a Local Discontinuous Galerkin approximation for nonlinear systems with balanced Orlicz-structure
论文作者
论文摘要
在本文中,我们研究了具有平衡Orlicz结构的系统的局部不连续的Galerkin(LDG)近似。我们提出了一种新的数值通量,该通量可为线性ANSATZ函数产生最佳的收敛速率。特别是,我们的方法对$(p,δ)$ - 结构的问题产生了统一的治疗方法,用于任意$ p \ in(1,\ infty)$和$δ\ ge 0 $。
In this paper, we investigate a Local Discontinuous Galerkin (LDG) approximation for systems with balanced Orlicz-structure. We propose a new numerical flux, which yields optimal convergence rates for linear ansatz functions. In particular, our approach yields a unified treatment for problems with $(p,δ)$-structure for arbitrary $p \in (1,\infty)$ and $δ\ge 0$.