论文标题
在抽象论证中重新访问初始集
Revisiting initial sets in abstract argumentation
论文作者
论文摘要
我们重新审视了Xu和Cayrol的初始集合的概念,即抽象论证框架中非空的最低允许集。初始集是一个简单的概念,用于分析抽象论证框架中的冲突,并解释为什么可以接受某些参数。我们对初始集合的结构做出了新的见解,并根据对原始框架的初始集合及其诱导的还原的初始集选择,为任何可接受的集合设计了一个简单的非确定性构造原理。特别是,我们通过该构建原则表征了许多现有的基于可接受性的语义,从而为扩展结构提供了建设性的解释。我们还研究了与初始集有关的某些问题有关其计算复杂性的问题。
We revisit the notion of initial sets by Xu and Cayrol, i.e., non-empty minimal admissible sets in abstract argumentation frameworks. Initial sets are a simple concept for analysing conflicts in an abstract argumentation framework and to explain why certain arguments can be accepted. We contribute with new insights on the structure of initial sets and devise a simple non-deterministic construction principle for any admissible set, based on iterative selection of initial sets of the original framework and its induced reducts. In particular, we characterise many existing admissibility-based semantics via this construction principle, thus providing a constructive explanation on the structure of extensions. We also investigate certain problems related to initial sets with respect to their computational complexity.