论文标题

工程绑定的连续体在电信波长中具有非晶格

Engineering bound states in the continuum at telecom wavelengths with non-Bravais lattices

论文作者

Murai, Shunsuke, Abujetas, Diego R., Liu, Libei, Castellanos, Gabriel W., Giannini, Vincenzo, Sánchez-Gil, José A., Tanaka, Katsuhisa, Rivas, Jaime Gómez

论文摘要

通过每个粒子中局部偶极子的辐射耦合,可以在纳米颗粒的周期性阵列中诱导各种光学现象。最令人印象深刻的例子是连续体(BICS)中的结合状态,它们是电磁模式,在光锥体内部具有分散,但无限的寿命,即无法泄漏到连续体的模式。受对称保护的BIC出现在周期系统分散的高度对称点上。尽管在单位电池中添加非务必的晶格点是调整对称性的一种简单而直接的方式,但在周期系统中,这种粒子晶格中的BIC(即非勃起晶格)的探索较少。从SI纳米界的周期性平方晶格开始,我们通过使晶胞中第二个磁盘的大小和位置来制备了三个非Bravais晶格。衍射诱导的耦合激发了每种纳米界的磁/电偶极子,在$γ$点下产生两个表面晶格共振,介于两者之间。 $ \ sim的%$ 41 mev。 高/低能量分支分别成为大小/位置解决阵列的BIC,而当同时尺寸和位置同时使尺寸和位置均匀时,两个分支都是明亮的(或漏水)。磁性和电共振在介电纳米颗粒中的作用以及模式的BIC向明亮特征的变化,通过BIC在引人注目的阵列中的两个不同起源来解释,该阵列中的两个不同的起源是在耦合的电气和磁性偶极模型的帮助下进一步讨论的。这项研究提供了一种简单的方法,可以在包括等离子和电介质系统在内的非Bravais晶格中的电信波长上调整BIC,从而可以扩展到广泛的频率。

Various optical phenomena can be induced in periodic arrays of nanoparticles by the radiative coupling of the local dipoles in each particle. Probably the most impressive example is bound states in the continuum (BICs), which are electromagnetic modes with a dispersion inside the light cone but infinite lifetime, i.e., modes that cannot leak to the continuum. Symmetry-protected BICs appear at highly symmetric points in the dispersion of periodic systems. Although the addition of nonequivalent lattice points in a unit cell is an easy and straightforward way of tuning the symmetry, BICs in such particle lattice, i.e., non-Bravais lattice, are less explored among periodic systems. Starting from a periodic square lattice of Si nanodisks, we have prepared three non-Bravais lattices by detuning size and position of the second disk in the unit cell. Diffraction-induced coupling excites magnetic/electric dipoles in each nanodisk, producing two surface lattice resonances at the $Γ$ point with a band gap in between. %of $\sim$ 41 meV. The high/low energy branch becomes a BIC for the size/position-detuned array, respectively, while both branches are bright (or leaky) when both size and position are detuned simultaneously. The role of magnetic and electric resonances in dielectric nanoparticles and the change of BIC to bright character of the modes is explained by the two different origins of BICs in the detuned arrays, which is further discussed with the aid of a coupled electric and magnetic dipole model. This study gives a simple way of tuning BICs at telecom wavelengths in non-Bravais lattices, including both plasmonic and dielectric systems, thus scalable to a wide range of frequencies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源