论文标题

在一个好奇的整数序列上

On a curious integer sequence

论文作者

Farhi, Bakir

论文摘要

该注释专门研究以下定义的复发数值序列:$ a_0 = 0 $,$ a_n = \ frac {n} {2} a_ {n -1} +(n -1) +(n -1)!$($ \ forall n \ geq 1 $)。虽然,$ {(a_n)} _ n $立即由有理数构成,分母的功率为$ 2 $,但$ {(a_n)} _ n $实际上是一个整数序列并不微不足道。在本说明中,我们通过在Genocchi数字和第一类的Stirling数字方面表达$ A_N $来证明这一事实。我们从我们的主要结果中得出了几个推论,并以一些言论和开放的问题得出结论。

This note is devoted to study the recurrent numerical sequence defined by: $a_0 = 0$, $a_n = \frac{n}{2} a_{n - 1} + (n - 1)!$ ($\forall n \geq 1$). Although, it is immediate that ${(a_n)}_n$ is constituted of rational numbers with denominators powers of $2$, it is not trivial that ${(a_n)}_n$ is actually an integer sequence. In this note, we prove this fact by expressing $a_n$ in terms of the Genocchi numbers and the Stirling numbers of the first kind. We derive from our main result several corollaries and we conclude with some remarks and open problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源