论文标题

学习修改忠实摘要的参考文献

Learning to Revise References for Faithful Summarization

论文作者

Adams, Griffin, Shing, Han-Chin, Sun, Qing, Winestock, Christopher, McKeown, Kathleen, Elhadad, Noémie

论文摘要

在具有自然存在数据集的真实情况下,参考摘要很嘈杂,可能包含无法从源文本推断的信息。在大型新闻机构中,已证明去除低质量的样本可减少模型幻觉。但是,对于较小和/或嘈杂的语料库,过滤对性能有害。为了在保留所有数据的同时提高参考质量,我们提出了一种新方法:选择性地重写未支持的参考句子以更好地反映源数据。我们通过损坏受支持的句子并学会通过对比度学习修改参考句子来自动生成一个正面和负面修订的综合数据集。修订的强度被视为可控属性,因此,在推断上,可以过度生成不同的候选人,以平衡忠诚和抽象。为了测试我们的方法,我们从公开可用的模拟物III出院摘要中提取嘈杂的参考,以完成医院课程摘要的任务,并改变对培训模型的数据。根据指标和人类评估,接受修订的临床参考培训的模型比对原始或过滤数据培训的模型要忠实,信息丰富和流利。

In real-world scenarios with naturally occurring datasets, reference summaries are noisy and may contain information that cannot be inferred from the source text. On large news corpora, removing low quality samples has been shown to reduce model hallucinations. Yet, for smaller, and/or noisier corpora, filtering is detrimental to performance. To improve reference quality while retaining all data, we propose a new approach: to selectively re-write unsupported reference sentences to better reflect source data. We automatically generate a synthetic dataset of positive and negative revisions by corrupting supported sentences and learn to revise reference sentences with contrastive learning. The intensity of revisions is treated as a controllable attribute so that, at inference, diverse candidates can be over-generated-then-rescored to balance faithfulness and abstraction. To test our methods, we extract noisy references from publicly available MIMIC-III discharge summaries for the task of hospital-course summarization, and vary the data on which models are trained. According to metrics and human evaluation, models trained on revised clinical references are much more faithful, informative, and fluent than models trained on original or filtered data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源