论文标题

衡量人工智能:系统评估和对治理的影响

Measuring artificial intelligence: a systematic assessment and implications for governance

论文作者

Hötte, Kerstin, Tarannum, Taheya, Verendel, Vilhelm, Bennett, Lauren

论文摘要

管理人工智能(AI)发明是一个主要的政策问题,但定义和衡量标准仍然有争议。我们比较了四种基于专利的方法,反映了对AI的不同理解。使用美国专利(1990-2019),我们评估了每种方法将AI分类为通用技术(GPT)的程度,并检查专利浓度 - 两个与中央策略相关的维度。这些方法仅在1.37%的专利中重叠,在2019年将美国专利的3-17%定义为AI。所有方法都证实了AI的GPT特性,基于最小的基于关键字的集合表现出最高的增长和一般性。高GPTNESS表示公共良好特征,证明公共支持是合理的。在方法中,AI专利集中于少数公司,强调了市场能力和监管挑战。因此,政策实施需要仔细考虑多个分类方法,以确保稳健,包容和有效的AI治理。

Governing artificial intelligence (AI) inventions is a major policy concern, yet definitions and measurement remain contested. We compare four patent-based approaches reflecting distinct understandings of AI. Using US patents (1990-2019), we assess the degree to which each approach classifies AI as a general-purpose technology (GPT) and examine patent concentration--two central policy-relevant dimensions. The approaches overlap in just 1.37% of patents, defining between 3-17% of all US patents in 2019 as AI. All approaches confirm AI's GPT characteristics, with the smallest keyword-based set exhibiting the highest growth and generality. High GPTness indicates public good characteristics, justifying public support. Across methods, AI patents concentrate among a few firms, highlighting market power and regulatory challenges. Policy implementation, thus, requires careful consideration of multiple classification methods to ensure robust, inclusive, and effective AI governance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源