论文标题

社会疏远网络创建

Social Distancing Network Creation

论文作者

Friedrich, Tobias, Gawendowicz, Hans, Lenzner, Pascal, Melnichenko, Anna

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

During a pandemic people have to find a trade-off between meeting others and staying safely at home. While meeting others is pleasant, it also increases the risk of infection. We consider this dilemma by introducing a game-theoretic network creation model in which selfish agents can form bilateral connections. They benefit from network neighbors, but at the same time, they want to maximize their distance to all other agents. This models the inherent conflict that social distancing rules impose on the behavior of selfish agents in a social network. Besides addressing this familiar issue, our model can be seen as the inverse to the well-studied Network Creation Game by Fabrikant et al. [PODC 2003] where agents aim at being as central as possible in the created network. Thus, our work is in-line with studies that compare minimization problems with their maximization versions. We look at two variants of network creation governed by social distancing. In the first variant, there are no restrictions on the connections being formed. We characterize optimal and equilibrium networks, and we derive asymptotically tight bounds on the Price of Anarchy and Price of Stability. The second variant is the model's generalization that allows restrictions on the connections that can be formed. As our main result, we prove that Swap-Maximal Routing-Cost Spanning Trees, an efficiently computable weaker variant of Maximum Routing-Cost Spanning Trees, actually resemble equilibria for a significant range of the parameter space. Moreover, we give almost tight bounds on the Price of Anarchy and Price of Stability. These results imply that, compared the well-studied inverse models, under social distancing the agents' selfish behavior has a significantly stronger impact on the quality of the equilibria, i.e., allowing socially much worse stable states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源