论文标题

关于calabi-yau分数完整交叉点的注释

A note on periods of Calabi--Yau fractional complete intersections

论文作者

Lee, Tsung-Ju

论文摘要

我们证明,gkz $ \ mathscr {d} $ - 模块$ \ mathcal {m} _ {a}^β$源自calabi-- YAU-YAU-YAU分数完整的圆磨品种的完整相互作用是完整的,即所有解决方案,即$ \ Mathcal {m} m} {m} _}这特别意味着$ \ MATHCAL {M} _ {a}^β$等效于Picard-fuchs系统。作为一个应用程序,我们给出了Calabi-Yau的周期积分的明确公式,来自$ \ Mathbf {p}^{3} $分支的双重盖上的双盖,这是一般位置上的八个超平面。

We prove that the GKZ $\mathscr{D}$-module $\mathcal{M}_{A}^β$ arising from Calabi--Yau fractional complete intersections in toric varieties is complete, i.e., all the solutions to $\mathcal{M}_{A}^β$ are period integrals. This particularly implies that $\mathcal{M}_{A}^β$ is equivalent to the Picard--Fuchs system. As an application, we give explicit formulae of the period integrals of Calabi--Yau threefolds coming from double covers of $\mathbf{P}^{3}$ branch over eight hyperplanes in general position.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源