论文标题

关于先前独立机制设计中第二价格拍卖的鲁棒性

On the Robustness of Second-Price Auctions in Prior-Independent Mechanism Design

论文作者

Anunrojwong, Jerry, Balseiro, Santiago R., Besbes, Omar

论文摘要

古典的贝叶斯机制设计依赖于普遍的先验假设,但是在实践中通常不可用。我们研究了放宽此假设的先前独立机制的设计:卖方将不可分割的物品出售给$ n $买家,以使买家的估值是从买卖双方都不知道的联合分销中获取的;买家不需要形成对竞争对手的信念,卖方认为分布是从指定类中选择的。我们通过最糟糕的遗憾来衡量绩效,或者可以实现的预期收入与购买者的估值和实际机制收入之间的差异。 我们研究了一系列广泛的估值分布,这些分布捕获了广泛的可能依赖性:独立和相同分布的(I.I.D.)分布,I.I.D。的混合物。分布,附属和可交换分布,可交换分布以及所有联合分布。我们以准封闭形式得出minimax值和相关的最佳机制。特别是,我们表明前三个类承认相同的minimax遗憾价值,这与竞争对手的数量减少,而最后两个则具有相同的minimax遗憾,等于单一买家案例。此外,我们表明,最小值最佳机制在所有设置中都有一个简单的形式:第二价格拍卖,其随机储备价格显示了其在与先前独立的机制设计中的稳健性。在达到结果的途中,我们还开发了一种原则性方法,以通过一阶条件确定最佳机制和最坏情况分布的形式,这应该在其他最小问题中具有独立感兴趣。

Classical Bayesian mechanism design relies on the common prior assumption, but such prior is often not available in practice. We study the design of prior-independent mechanisms that relax this assumption: the seller is selling an indivisible item to $n$ buyers such that the buyers' valuations are drawn from a joint distribution that is unknown to both the buyers and the seller; buyers do not need to form beliefs about competitors, and the seller assumes the distribution is adversarially chosen from a specified class. We measure performance through the worst-case regret, or the difference between the expected revenue achievable with perfect knowledge of buyers' valuations and the actual mechanism revenue. We study a broad set of classes of valuation distributions that capture a wide spectrum of possible dependencies: independent and identically distributed (i.i.d.) distributions, mixtures of i.i.d. distributions, affiliated and exchangeable distributions, exchangeable distributions, and all joint distributions. We derive in quasi closed form the minimax values and the associated optimal mechanism. In particular, we show that the first three classes admit the same minimax regret value, which is decreasing with the number of competitors, while the last two have the same minimax regret equal to that of the single buyer case. Furthermore, we show that the minimax optimal mechanisms have a simple form across all settings: a second-price auction with random reserve prices, which shows its robustness in prior-independent mechanism design. En route to our results, we also develop a principled methodology to determine the form of the optimal mechanism and worst-case distribution via first-order conditions that should be of independent interest in other minimax problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源