论文标题

隐式对象映射使用嘈杂的数据

Implicit Object Mapping With Noisy Data

论文作者

Abou-Chakra, Jad, Dayoub, Feras, Sünderhauf, Niko

论文摘要

将场景中的单个对象建模为神经辐射场(NERFS)提供了一种替代的几何场景表示形式,该表示可能使下游机器人技术任务(例如场景理解和对象操纵)受益。但是,我们确定了使用机器人收集的现实世界训练数据来训练NERF的三个挑战:(i)摄像机轨迹受到限制,并且不能保证完全视觉覆盖 - 尤其是当存在感兴趣的对象的障碍时; (ii)与图像相关的姿势由于探测仪或定位噪声而嘈杂; (iii)对象不容易与背景隔离。本文评估了上述因素在多大程度上降低了学习隐式对象表示的质量。我们介绍了一条管道,将场景分解为多个单独的对象-NER,使用嘈杂的对象实例掩码和边界框,并评估该管道对噪声姿势,实例掩码和训练图像的敏感性。我们发现,可以通过深度监督对嘈杂实例掩模的敏感性部分缓解,并量化在NERF优化过程中将相机外部设备包括在内的重要性。

Modelling individual objects in a scene as Neural Radiance Fields (NeRFs) provides an alternative geometric scene representation that may benefit downstream robotics tasks such as scene understanding and object manipulation. However, we identify three challenges to using real-world training data collected by a robot to train a NeRF: (i) The camera trajectories are constrained, and full visual coverage is not guaranteed - especially when obstructions to the objects of interest are present; (ii) the poses associated with the images are noisy due to odometry or localization noise; (iii) the objects are not easily isolated from the background. This paper evaluates the extent to which above factors degrade the quality of the learnt implicit object representation. We introduce a pipeline that decomposes a scene into multiple individual object-NeRFs, using noisy object instance masks and bounding boxes, and evaluate the sensitivity of this pipeline with respect to noisy poses, instance masks, and the number of training images. We uncover that the sensitivity to noisy instance masks can be partially alleviated with depth supervision and quantify the importance of including the camera extrinsics in the NeRF optimisation process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源