论文标题

傅立叶成像器网络(FIN):具有优质外部概括的全息图重建的深度神经网络

Fourier Imager Network (FIN): A deep neural network for hologram reconstruction with superior external generalization

论文作者

Chen, Hanlong, Huang, Luzhe, Liu, Tairan, Ozcan, Aydogan

论文摘要

基于深度学习的图像重建方法在相恢复和全息成像方面取得了显着成功。但是,将其图像重建性能概括为网络从未见过的新型样本类型仍然是一个挑战。在这里,我们介绍了一个深度学习框架,称为傅立叶成像器网络(FIN),该框架可以从新型样本的原始全息图中执行端到端的相位恢复和图像重建,从而在外部概括中取得了前所未有的成功。 FIN体系结构基于空间傅立叶变换模块,该模块使用可学习的过滤器和一个全球接收场处理其输入的空间频率。与用于全息图重建的现有卷积深神经网络相比,FIN对新样品表现出较高的概括,同时在其图像推理速度上也更快,完成了样品区域的每1 mm^2的全息图重建任务。我们通过使用人类肺组织样品训练鳍片并在人类前列腺,唾液腺组织和PAP涂片样品上盲目测试,从而证明了其优越的外部概括和图像重建速度,从而验证了鳍片的性能。除了全息显微镜和定量相成像之外,FIN和潜在的神经网络体系结构还可能为在计算成像和机器视觉领域中设计广泛概括的深度学习模型提供了各种新的机会。

Deep learning-based image reconstruction methods have achieved remarkable success in phase recovery and holographic imaging. However, the generalization of their image reconstruction performance to new types of samples never seen by the network remains a challenge. Here we introduce a deep learning framework, termed Fourier Imager Network (FIN), that can perform end-to-end phase recovery and image reconstruction from raw holograms of new types of samples, exhibiting unprecedented success in external generalization. FIN architecture is based on spatial Fourier transform modules that process the spatial frequencies of its inputs using learnable filters and a global receptive field. Compared with existing convolutional deep neural networks used for hologram reconstruction, FIN exhibits superior generalization to new types of samples, while also being much faster in its image inference speed, completing the hologram reconstruction task in ~0.04 s per 1 mm^2 of the sample area. We experimentally validated the performance of FIN by training it using human lung tissue samples and blindly testing it on human prostate, salivary gland tissue and Pap smear samples, proving its superior external generalization and image reconstruction speed. Beyond holographic microscopy and quantitative phase imaging, FIN and the underlying neural network architecture might open up various new opportunities to design broadly generalizable deep learning models in computational imaging and machine vision fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源