论文标题
在基于空间光调节器的干涉仪中使用结构化照明的自适应高光谱成像
Adaptive hyperspectral imaging using structured illumination in a spatial light modulator-based interferometer
论文作者
论文摘要
我们在基于SLM的Michelson干涉仪中使用结构化照明开发了一种新型的高光谱成像系统。在我们的设计中,我们使用反光SLM作为米歇尔森干涉仪的一个臂中的镜子,并通过在SLM显示屏上改变相位来扫描干涉仪。为了实现后者,我们在SLM显示屏上应用一个棋盘相掩码,其中灰度在0-255之间变化,从而将动态相位最高为262°。我们将一个超脑源融入干涉仪中,以模仿一个天文对象,例如太阳,并选择一个类似于太阳光谱中存在的Fe X的强发射线的637.4 nm的中心波长。我们使用30 nm的带宽,并提取与光谱分辨率相对应的3.8 nm的条纹,该光谱分辨率受SLM的反射率的限制。我们还通过在中间边缘之间的光谱采样约0.03 nm的光谱采样,通过在相掩码上改变相位的相位,证明了〜8 nm的最大波长可调节性。可以按几十毫秒的时间尺度将棋盘相掩码靠近实时尺寸,以获取其他几乎连接波长的光谱信息。紧凑性,潜在的低成本,低功率需求,实时可调节性以及设置中缺乏移动的机械零件意味着它在需要接近实时,多波长光谱应用的设置中具有非常有用的应用,并且在太空天文学中尤其重要。
We develop a novel hyperspectral imaging system using structured illumination in an SLM-based Michelson interferometer. In our design, we use a reflective SLM as a mirror in one of the arms of a Michelson interferometer, and scan the interferometer by varying the phase across the SLM display. For achieving the latter, we apply a checkerboard phase mask on the SLM display where the gray value varies between 0-255, thereby imparting a dynamic phase of up to 262° to the incident light beam. We couple a supercontinuum source into the interferometer in order to mimic an astronomical object such as the Sun, and choose a central wavelength of 637.4 nm akin to the strong emission line of Fe X present in the solar spectrum. We use a bandwidth of 30 nm, and extract fringes corresponding to a spectral resolution of 3.8 nm which is limited by the reflectivity of the SLM. We also demonstrate a maximum wavelength tunability of ~8 nm by varying the phase over the phase mask with a spectral sampling of around 0.03 nm between intermediate fringes. The checkerboard phase mask can be adapted close to real time on time-scales of a few tens of milliseconds to obtain spectral information for other near-contiguous wavelengths. The compactness, potential low cost, low power requirements, real-time tunability and lack of moving mechanical parts in the setup implies that it can have very useful applications in settings which require near real-time, multi-wavelength spectroscopic applications, and is especially relevant in space astronomy.