论文标题
在随机增强的狄拉克图中,汉密尔顿周期的力量 - 完整的集合
Powers of Hamiltonian cycles in randomly augmented Dirac graphs -- the complete collection
论文作者
论文摘要
我们在随机增强的零图中研究了汉密尔顿周期的力量,即,$ n $ vertex图$ g $,至少至少$(1/2+\ varepsilon)n $,添加了一些随机边缘。对于任何DIRAC图和每个整数$ M \ GE2 $,我们准确地估计阈值概率$ p = p(n)$对于随机增强$ g \ cup g(n,p)$包含hamiltonian循环的$ m $ th power。
We study the powers of Hamiltonian cycles in randomly augmented Dirac graphs, that is, $n$-vertex graphs $G$ with minimum degree at least $(1/2+\varepsilon)n$ to which some random edges are added. For any Dirac graph and every integer $m\ge2$, we accurately estimate the threshold probability $p=p(n)$ for the event that the random augmentation $G\cup G(n,p)$ contains the $m$-th power of a Hamiltonian cycle.