论文标题

结直肠癌的生存预测,使用基于深层分布的多构度学习

Colorectal cancer survival prediction using deep distribution based multiple-instance learning

论文作者

Li, Xingyu, Jonnagaddala, Jitendra, Cen, Min, Zhang, Hong, Xu, Xu Steven

论文摘要

已经开发了几种深度学习算法,以使用整个幻灯片图像(WSIS)来预测癌症患者的存活。但是,WSI中与患者生存有关的WSI中的图像表型的鉴定对于临床医生来说都是与患者的生存和疾病进展有关的,以及深度学习算法。大多数基于深度学习的多个实例学习(MIL)用于生存预测的算法使用顶级实例(例如Maxpooling)或顶级/底部实例(例如Mesonet)来识别图像表型。在这项研究中,我们假设WSI中斑块得分分布的全面信息可以更好地预测癌症的生存率。我们开发了一种基于分布的多种构度生存学习算法(DeepDismisl)来验证这一假设。我们使用两个大型国际大肠癌WSIS数据集设计和执行实验-MCO CRC和TCGA Coad -Read。我们的结果表明,有关WSI贴片分数的分布的信息越多,预测性能越好。包括每个选定分配位置(例如百分位数)周围的多个邻里实例可以进一步改善预测。与最近发表的最先进的算法相比,DeepDismisl具有优越的预测能力。此外,我们的算法是可解释的,可以帮助理解癌症形态表型与癌症生存风险之间的关系。

Several deep learning algorithms have been developed to predict survival of cancer patients using whole slide images (WSIs).However, identification of image phenotypes within the WSIs that are relevant to patient survival and disease progression is difficult for both clinicians, and deep learning algorithms. Most deep learning based Multiple Instance Learning (MIL) algorithms for survival prediction use either top instances (e.g., maxpooling) or top/bottom instances (e.g., MesoNet) to identify image phenotypes. In this study, we hypothesize that wholistic information of the distribution of the patch scores within a WSI can predict the cancer survival better. We developed a distribution based multiple-instance survival learning algorithm (DeepDisMISL) to validate this hypothesis. We designed and executed experiments using two large international colorectal cancer WSIs datasets - MCO CRC and TCGA COAD-READ. Our results suggest that the more information about the distribution of the patch scores for a WSI, the better is the prediction performance. Including multiple neighborhood instances around each selected distribution location (e.g., percentiles) could further improve the prediction. DeepDisMISL demonstrated superior predictive ability compared to other recently published, state-of-the-art algorithms. Furthermore, our algorithm is interpretable and could assist in understanding the relationship between cancer morphological phenotypes and patients cancer survival risk.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源