论文标题

非均匀光谱的动力学方法

A dynamical approach to nonhomogeneous spectra

论文作者

Li, Jian, Liang, XianJuan

论文摘要

令$α> 0 $和$ 0 <γ<1 $。定义$ g_ {α,γ} \ colon \ mathbb {n} \ to \ mathbb {n} _0 $ by $ g_ {α,γ}(n)= \ lfloornα+γ\γ\ rfloor $集合$ g_ {α,γ}(\ mathbb {n})= \ {g_ {α,γ}(n)\ colon n \ in \ mathbb {n} \} $称为$γ$ - nonhonhososos speptrum $ $ $α$。通过扩展,函数$ g_ {α,γ} $称为光谱。 1996年,伯格森(Bergelson),辛德曼(Hindman)和KRA表明,功能$ g_ {α,γ} $保留了$ \ mathbb {n} $的子集的一定程度,也就是说,如果子集$ a $ a $ a $ a $ \ a $ \ mathbb {n} $是ip-set,ip set,一套$ $^$^*$^*$^*$^*$^*$^*$^*$^*$^*$ - $ g_ {α,γ}(a)$是所有$α> 0 $和$ 0 <γ<1 $的相应对象。 2012年,Hindman和Johnson扩展了这一结果,其中包括其他几个宽敞的概念:C-set,J-set,强烈的中央集合和分段联合套件。我们在此问题上采用了动态方法,并在光谱的保存和悬架的升力属性之间建立了对应关系。作为应用程序,我们给出了一些已知结果的统一证明,并获得了一些新的结果。

Let $α>0$ and $0<γ<1$. Define $g_{α,γ}\colon \mathbb{N}\to\mathbb{N}_0$ by $g_{α,γ}(n)=\lfloor nα+γ\rfloor$, where $\lfloor x \rfloor$ is the largest integer less than or equal to $x$. The set $g_{α,γ}(\mathbb{N})=\{g_{α,γ}(n)\colon n\in\mathbb{N}\}$ is called the $γ$-nonhomogeneous spectrum of $α$. By extension, the functions $g_{α,γ}$ are referred to as spectra. In 1996, Bergelson, Hindman and Kra showed that the functions $g_{α,γ}$ preserve some largeness of subsets of $\mathbb{N}$, that is, if a subset $A$ of $\mathbb{N}$ is an IP-set, a central set, an IP$^*$-set, or a central$^*$-set, then $g_{α,γ}(A)$ is the corresponding object for all $α>0$ and $0<γ<1$. In 2012, Hindman and Johnson extended this result to include several other notions of largeness: C-sets, J-sets, strongly central sets, and piecewise syndetic sets. We adopt a dynamical approach to this issue and build a correspondence between the preservation of spectra and the lift property of suspension. As an application, we give a unified proof of some known results and also obtain some new results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源