论文标题
NIR-VIS和VIS-VIS面部识别的联合特征分布对齐学习
Joint Feature Distribution Alignment Learning for NIR-VIS and VIS-VIS Face Recognition
论文作者
论文摘要
由于最新的深度学习的发展,对可见光(VIS)图像的面部识别(VIS)图像具有很高的精度。但是,由于域差异和缺乏大HFR数据集,异质的面部识别(HFR)仍然是在不同域中匹配的面部匹配的面部。几种方法试图通过微调来减少域差异,这会导致VIS域中的性能显着降解,因为它失去了高度歧视性的VIS表示。为了克服这个问题,我们提出了联合特征分布对准学习(JFDAL),这是一种利用知识蒸馏的联合学习方法。它使我们能够保持高HFR性能,并保留Vis域的原始性能。广泛的实验表明,与公共HFR数据集中的常规微调方法相比,我们所提出的方法在统计学上的性能明显更好,并且在VIS域中的oulu-casia nir&vis以及流行的验证数据集,例如flw,cfp,cfp,agedb。此外,现有最新HFR方法的比较实验表明,我们的方法在Oulu-Casia Nir&Vis DataSet上实现了可比的HFR性能,而VIS性能的降低较少。
Face recognition for visible light (VIS) images achieve high accuracy thanks to the recent development of deep learning. However, heterogeneous face recognition (HFR), which is a face matching in different domains, is still a difficult task due to the domain discrepancy and lack of large HFR dataset. Several methods have attempted to reduce the domain discrepancy by means of fine-tuning, which causes significant degradation of the performance in the VIS domain because it loses the highly discriminative VIS representation. To overcome this problem, we propose joint feature distribution alignment learning (JFDAL) which is a joint learning approach utilizing knowledge distillation. It enables us to achieve high HFR performance with retaining the original performance for the VIS domain. Extensive experiments demonstrate that our proposed method delivers statistically significantly better performances compared with the conventional fine-tuning approach on a public HFR dataset Oulu-CASIA NIR&VIS and popular verification datasets in VIS domain such as FLW, CFP, AgeDB. Furthermore, comparative experiments with existing state-of-the-art HFR methods show that our method achieves a comparable HFR performance on the Oulu-CASIA NIR&VIS dataset with less degradation of VIS performance.