论文标题

使用深钢筋学习对磁性软机器人的自适应致动

Adaptive actuation of magnetic soft robots using deep reinforcement learning

论文作者

Yao, Jianpeng, Cao, Quanliang, Ju, Yuwei, Sun, Yuxuan, Liu, Ruiqi, Han, Xiaotao, Li, Liang

论文摘要

磁性软机器人在不束缚的致动和出色的可控性方面具有独特的优势,引起了人们的兴趣。但是,在许多情况下,找到所需的磁化模式或磁场以实现这些机器人的所需功能是非常挑战的。尚未提出统一的设计框架,现有方法主要依赖于手动启发式方法,这些启发式方法很难满足所需的机器人运动的高复杂程度。在这里,我们开发了一种智能方法来解决相关的逆设计问题,该问题是通过基于Cosserat Rod模型引入磁性软机器人的新型仿真平台,以及基于TD3的深钢筋学习框架。我们证明,具有不同磁化模式的磁性软机器人可以在没有人类指导的情况下学习移动,并且可以自主生成有效的磁场,然后可以以开环的方式将其直接应用于真实的磁性软机器人。

Magnetic soft robots have attracted growing interest due to their unique advantages in terms of untethered actuation and excellent controllability. However, finding the required magnetization patterns or magnetic fields to achieve the desired functions of these robots is quite challenging in many cases. No unified framework for design has been proposed yet, and existing methods mainly rely on manual heuristics, which are hard to satisfy the high complexity level of the desired robotic motion. Here, we develop an intelligent method to solve the related inverse-design problems, implemented by introducing a novel simulation platform for magnetic soft robots based on Cosserat rod models and a deep reinforcement learning framework based on TD3. We demonstrate that magnetic soft robots with different magnetization patterns can learn to move without human guidance in simulations, and effective magnetic fields can be autonomously generated that can then be applied directly to real magnetic soft robots in an open-loop way.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源