论文标题

由原星盘差异驱动的ICELIN变化

Iceline Variations Driven by Protoplanetary Disc Gaps

论文作者

Broome, Madelyn, Shorttle, Oliver, Kama, Mihkel, Booth, Richard A.

论文摘要

形成行星的组成受到原球盘的热结构的强烈影响。这种热结构主要是由尘埃辐射转移和粘性(吸收)加热来设定的,并且可能会受到缝隙的影响 - 当行星形成时可能发生的低灰尘和气体密度区域。到目前为止,尘埃表面密度变化对圆盘温度的影响尚未了解。在这项工作中,我们使用辐射传输代码MCMAX对2D尘埃热结构进行建模,其单个间隙对应于行星,其质量为0.1 m $ _j $ -5 m $ _j $,轨道半径为3、5和10 AU。间隙中的低灰尘不透明度可以使辐射更深地渗透到椎间盘中,并最大为16 K,但仅适用于位于光盘区域中恒星辐射是热源的主要来源(在这里,$ \ gtrsim $ 4 au)。在粘稠的区域($ \ lyssim $ 4 au)中,间隙的中间平面相对较凉,最多可达100 k。在间隙之外,由于椎间盘耀斑的变化而存在较大的加热和冷却径向振荡。这些热功能会影响粉尘和气体之间挥发性元素(H $ _2 $ O,CH $ _4 $,CO2,CO)的本地隔离。我们发现,相对于无间隙模型,Icelines经历了巨大的变化:高达6.5 au向恒星和4.3 au向中平面。尽管对ICELIN偏差的定量预测将需要更复杂的模型,包括运输和升华/冷凝动力学,但我们的结果提供了行星诱导的ICELIN变化的证据,代表了行星对材料组成的潜在反馈。

The composition of forming planets is strongly affected by the protoplanetary disc's thermal structure. This thermal structure is predominantly set by dust radiative transfer and viscous (accretional) heating and can be impacted by gaps - regions of low dust and gas density that can occur when planets form. The effect of variations in dust surface density on disc temperature has been poorly understood until now. In this work, we use the radiative transfer code MCMax to model the 2D dust thermal structure with individual gaps corresponding to planets with masses of 0.1 M$_J$ - 5 M$_J$ and orbital radii of 3, 5, and 10 AU. Low dust opacity in the gap allows radiation to penetrate deeper into the disc and warm the midplane by up to 16 K, but only for gaps located in the region of the disc where stellar irradiation is the dominant source of heat (here, a$\gtrsim$4 AU). In viscously-heated regions (a$\lesssim$4 AU), the midplane of the gap is relatively cooler by up to 100 K. Outside of the gap, broad radial oscillations in heating and cooling are present due to changes in disc flaring. These thermal features affect local segregation of volatile elements (H$_2$O, CH$_4$, CO2, CO) between the dust and gas. We find that icelines experience dramatic shifts relative to gapless models: up to 6.5 AU towards the star and 4.3 AU towards the midplane. While quantitative predictions of iceline deviations will require more sophisticated models which include transport and sublimation/condensation kinetics, our results provide evidence that planet-induced iceline variations represent a potential feedback from the planet onto the composition of material it is accreting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源