论文标题

Maxwell方程的耗散特征值的渐近性

Asymptotic of the dissipative eigenvalues of Maxwell's equations

论文作者

Petkov, Vesselin

论文摘要

令$ω= \ Mathbb r^3 \ setMinus \ bar {k} $,其中$ k $是一个带有光滑边界$γ$的开放式界面域。令$ v(t)= e^{tg_b},\:t \ geq 0,$为与麦克斯韦方程相关的半群,$ω$,具有耗散边界条件$ c $ν\ wedge(ν\ wedge e)+γ(x)(ν\ wedge h)= 0,unge x(x)= 0,γ(x)> 0,$ 0,$ wer x $ wer x $ wer x y quing wer x y in $ wer x- \ neq 1,\:\ forall x \ inγ,$,我们在负实轴的多项式邻域中为$ g_b $的特征值的计数函数建立了一个Weyl公式。

Let $Ω= \mathbb R^3 \setminus \bar{K}$, where $K$ is an open bounded domain with smooth boundary $Γ$. Let $V(t) = e^{tG_b},\: t \geq 0,$ be the semigroup related to Maxwell's equations in $Ω$ with dissipative boundary condition $ν\wedge (ν\wedge E)+ γ(x) (ν\wedge H) = 0, γ(x) > 0, \forall x \in Γ.$ We study the case when $γ(x) \neq 1, \: \forall x \in Γ,$ and we establish a Weyl formula for the counting function of the eigenvalues of $G_b$ in a polynomial neighbourhood of the negative real axis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源