论文标题
有界的Fatou和朱莉娅成分
Bounded Fatou and Julia components of meromorphic functions
论文作者
论文摘要
我们完全表征了出现的有界集,这些集合是Fatou和Julia集的Meromorthic函数集的组成部分。一方面,我们证明一个有界的域是某些Meromoromormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormor的功能的成分。另一方面,我们证明平面连续体是某些Meromoromormormormormormormormormormormormormormormormormormormormormormormormorphic函数的组成部分,并且仅当它具有空内部时。我们这样做是通过使用近似理论构建流浪连续性的Meromororphic函数。
We completely characterise the bounded sets that arise as components of the Fatou and Julia sets of meromorphic functions. On the one hand, we prove that a bounded domain is a Fatou component of some meromorphic function if and only if it is regular. On the other hand, we prove that a planar continuum is a Julia component of some meromorphic function if and only if it has empty interior. We do so by constructing meromorphic functions with wandering continua using approximation theory.