论文标题

有界的Fatou和朱莉娅成分

Bounded Fatou and Julia components of meromorphic functions

论文作者

Martí-Pete, David, Rempe, Lasse, Waterman, James

论文摘要

我们完全表征了出现的有界集,这些集合是Fatou和Julia集的Meromorthic函数集的组成部分。一方面,我们证明一个有界的域是某些Meromoromormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormor的功能的成分。另一方面,我们证明平面连续体是某些Meromoromormormormormormormormormormormormormormormormormormormormormormormormorphic函数的组成部分,并且仅当它具有空内部时。我们这样做是通过使用近似理论构建流浪连续性的Meromororphic函数。

We completely characterise the bounded sets that arise as components of the Fatou and Julia sets of meromorphic functions. On the one hand, we prove that a bounded domain is a Fatou component of some meromorphic function if and only if it is regular. On the other hand, we prove that a planar continuum is a Julia component of some meromorphic function if and only if it has empty interior. We do so by constructing meromorphic functions with wandering continua using approximation theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源