论文标题

达奇:牙科拱门先验辅助3D牙齿实例细分

DArch: Dental Arch Prior-assisted 3D Tooth Instance Segmentation

论文作者

Qiu, Liangdong, Ye, Chongjie, Chen, Pei, Liu, Yunbi, Han, Xiaoguang, Cui, Shuguang

论文摘要

3D牙科模型上的自动牙齿实例细分是计算机辅助正畸治疗的基本任务。现有的基于学习的方法在很大程度上依赖于昂贵的点注释。为了减轻这个问题,我们是第一个探索3D牙齿实例分割的低成本注释方式的人,即标记所有牙齿质心,每种牙科模型只有几颗牙齿。关于仅提供弱注释时的挑战,我们提出了牙齿弓的先验辅助3D牙齿分割方法,即达奇。我们的达奇由两个阶段组成,包括牙齿中心检测和牙齿实例分割。准确地检测牙齿质心可以帮助定位单个牙齿,从而使分割受益。因此,我们的达奇建议在协助检测前利用牙齿拱门。具体而言,我们首先提出了一种估算牙齿拱的粗到精细方法,其中牙齿拱最初是由bezier曲线回归生成的,然后对基于图的卷积网络(GCN)进行了训练以完善其。借助估计的牙齿拱门,我们提出了一种新颖的拱形意见点采样(APS)方法,以协助牙齿中心的提议产生。同时,使用基于贴片的训练策略对分段进行独立训练,旨在将牙齿实例分割为以牙齿中心为中心的3D贴片。 $ 4,773 $牙科模型的实验结果表明,我们的达奇可以准确地分割牙科模型的每个牙齿,并且其性能优于最先进的方法。

Automatic tooth instance segmentation on 3D dental models is a fundamental task for computer-aided orthodontic treatments. Existing learning-based methods rely heavily on expensive point-wise annotations. To alleviate this problem, we are the first to explore a low-cost annotation way for 3D tooth instance segmentation, i.e., labeling all tooth centroids and only a few teeth for each dental model. Regarding the challenge when only weak annotation is provided, we present a dental arch prior-assisted 3D tooth segmentation method, namely DArch. Our DArch consists of two stages, including tooth centroid detection and tooth instance segmentation. Accurately detecting the tooth centroids can help locate the individual tooth, thus benefiting the segmentation. Thus, our DArch proposes to leverage the dental arch prior to assist the detection. Specifically, we firstly propose a coarse-to-fine method to estimate the dental arch, in which the dental arch is initially generated by Bezier curve regression, and then a graph-based convolutional network (GCN) is trained to refine it. With the estimated dental arch, we then propose a novel Arch-aware Point Sampling (APS) method to assist the tooth centroid proposal generation. Meantime, a segmentor is independently trained using a patch-based training strategy, aiming to segment a tooth instance from a 3D patch centered at the tooth centroid. Experimental results on $4,773$ dental models have shown our DArch can accurately segment each tooth of a dental model, and its performance is superior to the state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源