论文标题
用于减少订单建模的参数动态模式分解
Parametric Dynamic Mode Decomposition for Reduced Order Modeling
论文作者
论文摘要
动态模式分解(DMD)是一种模型级还原方法,从数值或实验数据集中提取固定时间频率的空间模式。 DMD低级别或还原的操作员通常是通过时间数据集的单数值分解来获得的。对于参数依赖性模型,如许多多电性应用程序(例如不确定性量化或设计优化)中所发现的,开发的唯一参数DMD技术是一种堆叠方法,在倍数的数据集参数值集合在一起,从而增加了开发低率动力学还差级别的计算工作所需的计算工作。在本文中,我们提出了两种新的方法,用于执行参数DMD:一种基于还原级DMD特征类的插值,另一种是基于还原DMD(Koopman)操作员的插值。对于扩散为主导的非线性动态问题,包括多物理学辐射转移示例,给出了数值结果。比较所有三种参数DMD方法。
Dynamic Mode Decomposition (DMD) is a model-order reduction approach, whereby spatial modes of fixed temporal frequencies are extracted from numerical or experimental data sets. The DMD low-rank or reduced operator is typically obtained by singular value decomposition of the temporal data sets. For parameter-dependent models, as found in many multi-query applications such as uncertainty quantification or design optimization, the only parametric DMD technique developed was a stacked approach, with data sets at multiples parameter values were aggregated together, increasing the computational work needed to devise low-rank dynamical reduced-order models. In this paper, we present two novel approach to carry out parametric DMD: one based on the interpolation of the reduced-order DMD eigenpair and the other based on the interpolation of the reduced DMD (Koopman) operator. Numerical results are presented for diffusion-dominated nonlinear dynamical problems, including a multiphysics radiative transfer example. All three parametric DMD approaches are compared.