论文标题

有效且可扩展的路径积分蒙特卡洛模拟,带有Bose-Hubbard和XXZ模型的蠕虫类型更新

Efficient and scalable Path Integral Monte Carlo Simulations with worm-type updates for Bose-Hubbard and XXZ models

论文作者

Sadoune, Nicolas, Pollet, Lode

论文摘要

我们提出了蠕虫算法的新颖和开源实现,该算法是一种使用分区函数的路径积分表示,用于模拟Bose-Hubbard和Sign阳性自旋模型。该代码可以处理任意的晶格结构,并假定最近邻居站点之间以及密度密度类型的局部或最近的邻次相互作用,假定旋转交换术语或玻色弹振幅。我们明确地证明了算法相对于系统体积和逆温度的近线性缩放,并分析了U(1)二阶二阶相变的附近的自相关时间。该代码的编写方式是,可以直接在提供的框架的顶部直接完成对其他晶格模型的扩展以及与密切相关的符号阳性模型的编写。

We present a novel and open-source implementation of the worm algorithm, which is an algorithm to simulate Bose-Hubbard and sign-positive spin models using a path integral representation of the partition function. The code can deal with arbitrary lattice structures and assumes spin-exchange terms, or bosonic hopping amplitudes, between nearest-neighbor sites, and local or nearest-neighbor interactions of the density-density type. We explicitly demonstrate the near-linear scaling of the algorithm with respect to the system volume and the inverse temperature and analyze the autocorrelation times in the vicinity of a U(1) second order phase transition. The code is written in such a way that extensions to other lattice models as well as closely-related sign-positive models can be done straightforwardly on top of the provided framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源