论文标题

在有限截短的估值环上,nilpotent群体的忠实维度的多项式性

Polynomiality of the faithful dimension of nilpotent groups over finite truncated valuation rings

论文作者

Bardestani, Mohammad, Mallahi-Karai, Keivan, Rumiantsau, Dzmitry, Salmasian, Hadi

论文摘要

$ \ mathbb c $上的有限组$ \ mathrm g $的忠实维度,由$ m_ \ mathrm {fauithful}(\ mathrm g)$表示,是最小的整数$ n $,因此$ \ mathrm g $可以嵌入$ \ mathrm {gl} _n(gl} _n(bb c)中。继续我们以前的工作(ARXIV:1712.02019),我们解决了确定形式的有限$ p $ - 组的忠实维度的问题g $是nilpotent $ \ mathbb z $ -lie代数,$ r $范围比有限的截短估值环。 Our first main result is that if $R$ is a finite field with $p^f$ elements and $p$ is sufficiently large, then $m_\mathrm{faithful}(\mathcal G_R)=fg(p^f)$ where $g(T)$ belongs to a finite list of polynomials $g_1,\ldots,g_k$, with non-negative integer coefficients.多项式列表由Lie代数$ \ Mathfrak G $唯一确定。 Furthermore, for $1\leq i\leq k$ the set of pairs $(p,f)$ for which $g=g_i$ is a finite union of Cartesian products $\mathcal P\times \mathcal F$, where $\mathcal P$ is a Frobenius set of prime numbers and $\mathcal F$ is a subset of $\mathbb N$ that belongs to the Boolean代数由算术进程产生。 接下来,我们在更通用的环境中为$ M_ \ Mathrm {faitingful}(\ Mathcal G_R)$制定一个猜想的多项式属性,其中$ r $是有限的截断估值环,并且证明了此猜想的特殊情况。特别是,我们表明,对于由部分订单定义的大量lie代数$ \ mathfrak g $,$ m_ \ mathrm {fauithful}(\ mathcal g_r)$由单个多项式类型的公式给出。 最后,我们计算$ m_ \ mathrm {faitingful}(\ mathcal g_r)$恰恰是在$ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ c $ class $ c $ of $ n $ n $ n $ n $ $ r $的$ \ mathfrak g $的情况下,而$ r $是有限的造成的估算循环造成的估价环。

The faithful dimension of a finite group $\mathrm G$ over $\mathbb C$, denoted by $m_\mathrm{faithful}(\mathrm G)$, is the smallest integer $n$ such that $\mathrm G$ can be embedded in $\mathrm{GL}_n(\mathbb C)$. Continuing our previous work (arXiv:1712.02019), we address the problem of determining the faithful dimension of a finite $p$-group of the form $\mathcal G_R:=\exp(\mathfrak g_R)$ associated to $\mathfrak g_R:=\mathfrak g \otimes_\mathbb Z R $ in the Lazard correspondence, where $\mathfrak g$ is a nilpotent $\mathbb Z$-Lie algebra and $R$ ranges over finite truncated valuation rings. Our first main result is that if $R$ is a finite field with $p^f$ elements and $p$ is sufficiently large, then $m_\mathrm{faithful}(\mathcal G_R)=fg(p^f)$ where $g(T)$ belongs to a finite list of polynomials $g_1,\ldots,g_k$, with non-negative integer coefficients. The list of polynomials is uniquely determined by the Lie algebra $\mathfrak g$. Furthermore, for $1\leq i\leq k$ the set of pairs $(p,f)$ for which $g=g_i$ is a finite union of Cartesian products $\mathcal P\times \mathcal F$, where $\mathcal P$ is a Frobenius set of prime numbers and $\mathcal F$ is a subset of $\mathbb N$ that belongs to the Boolean algebra generated by arithmetic progressions. Next we formulate a conjectural polynomiality property for $m_\mathrm{faithful}(\mathcal G_R)$ in the more general setting where $R$ is a finite truncated valuation ring, and prove special cases of this conjecture. In particular, we show that for a vast class of Lie algebras $\mathfrak g $ that are defined by partial orders, $m_\mathrm{faithful}(\mathcal G_R)$ is given by a single polynomial-type formula. Finally, we compute $m_\mathrm{faithful}(\mathcal G_R)$ precisely in the case where $\mathfrak g$ is the free metabelian nilpotent Lie algebra of class $c$ on $n$ generators and $R$ is a finite truncated valuation ring.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源