论文标题

可解释的电池周期寿命范围预测使用细胞级别的早期降解数据

Interpretable Battery Cycle Life Range Prediction Using Early Degradation Data at Cell Level

论文作者

Zhang, Huang, Su, Yang, Altaf, Faisal, Wik, Torsten, Gros, Sebastien

论文摘要

电池周期使用早期降解数据的寿命预测在整个电池产品生命周期中都有许多潜在的应用。因此,已经提出了各种数据驱动的方法来预测电池循环寿命的点,并了解电池降解机制的最低知识。但是,管理寿命末迅速增加的电池数量较低,经济和技术风险较低,就需要对循环寿命进行预测,但仍缺乏量化的不确定性。这些高级数据驱动方法的解释性(即高预测准确性的原因)也值得研究。在这里,引入了一个分位数回归森林(QRF)模型,具有不假定周期寿命的任何特定分布的优势,以使周期寿命范围的预测以不确定度量化为预测间隔的宽度,此外还具有高度准确性的点预测。 QRF模型的超参数通过提出的α-逻辑加权标准进行了优化,以便对与预测间隔相关的覆盖概率进行校准。最终QRF模型的可解释性是通过两种全局模型不可吻合方法探索的,即置换重要性和部分依赖图。

Battery cycle life prediction using early degradation data has many potential applications throughout the battery product life cycle. For that reason, various data-driven methods have been proposed for point prediction of battery cycle life with minimum knowledge of the battery degradation mechanisms. However, managing the rapidly increasing amounts of batteries at end-of-life with lower economic and technical risk requires prediction of cycle life with quantified uncertainty, which is still lacking. The interpretability (i.e., the reason for high prediction accuracy) of these advanced data-driven methods is also worthy of investigation. Here, a Quantile Regression Forest (QRF) model, having the advantage of not assuming any specific distribution of cycle life, is introduced to make cycle life range prediction with uncertainty quantified as the width of the prediction interval, in addition to point predictions with high accuracy. The hyperparameters of the QRF model are optimized with a proposed alpha-logistic-weighted criterion so that the coverage probabilities associated with the prediction intervals are calibrated. The interpretability of the final QRF model is explored with two global model-agnostic methods, namely permutation importance and partial dependence plot.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源